1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
|
package ml
import (
"sync"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
)
// TrainingPhase represents different phases of ML training
type TrainingPhase int
const (
PhaseUnknown TrainingPhase = iota
PhaseInitialization // Model initialization and warmup
PhaseTraining // Active training phase
PhaseValidation // Validation phase
PhaseSaveCheckpoint // Saving model checkpoints
PhaseEvaluation // Model evaluation
PhaseInference // Inference/prediction phase
PhaseHyperparamTuning // Hyperparameter tuning
)
// TrainingWorkloadInfo tracks information about a training workload
type TrainingWorkloadInfo struct {
sync.RWMutex
// Workload identification
WorkloadID string // Unique identifier for this training session
StartTime time.Time // When training started
CurrentPhase TrainingPhase // Current training phase
PhaseStartTime time.Time // When current phase started
// Dataset information
TrainingDatasets map[uint64]*DatasetTraversalInfo // Training datasets by inode
ValidationDatasets map[uint64]*DatasetTraversalInfo // Validation datasets by inode
// Model information
ModelFiles map[uint64]*ModelFileInfo // Model files by inode
CheckpointFreq time.Duration // How often checkpoints are saved
LastCheckpoint time.Time // When last checkpoint was saved
// Training statistics
EpochsCompleted int // Number of training epochs completed
BatchesProcessed int64 // Total batches processed
CurrentLearningRate float64 // Current learning rate
LossHistory []float64 // Recent loss values
// Performance metrics
BatchProcessingTime time.Duration // Average time per batch
IOWaitTime time.Duration // Time waiting for I/O
ComputeTime time.Duration // Time spent computing
ThroughputItems float64 // Items processed per second
// Optimization state
OptimizationLevel OptimizationLevel // Current optimization level
PrefetchStrategy PrefetchStrategy // Current prefetching strategy
CachePolicy CachePolicy // Current caching policy
}
// ModelFileInfo tracks information about model files
type ModelFileInfo struct {
sync.RWMutex
FileType ModelFileType // Type of model file
Size int64 // File size
LastModified time.Time // Last modification time
AccessPattern AccessPattern // How the file is accessed
IsCheckpoint bool // Whether this is a checkpoint file
CheckpointEpoch int // Epoch number if checkpoint
LoadFrequency time.Duration // How often file is loaded
SaveFrequency time.Duration // How often file is saved
}
// ModelFileType represents different types of model files
type ModelFileType int
const (
ModelFileUnknown ModelFileType = iota
ModelWeights // Model weights/parameters
ModelArchitecture // Model architecture definition
ModelOptimizer // Optimizer state
ModelCheckpoint // Full model checkpoint
ModelMetadata // Model metadata
)
// OptimizationLevel represents different levels of ML optimization
type OptimizationLevel int
const (
OptimizationBasic OptimizationLevel = iota
OptimizationBalanced
OptimizationAggressive
OptimizationMaximum
)
// PrefetchStrategy represents different prefetching strategies for training
type PrefetchStrategy int
const (
PrefetchConservative PrefetchStrategy = iota
PrefetchBalanced
PrefetchAggressive
PrefetchAdaptive
)
// CachePolicy represents different caching policies for training data
type CachePolicy int
const (
CachePolicyNone CachePolicy = iota
CachePolicyLRU
CachePolicyTrainingAware
CachePolicyML
)
// TrainingOptimizer optimizes file access patterns for ML training workloads
type TrainingOptimizer struct {
sync.RWMutex
// Configuration
maxWorkloads int // Maximum concurrent workloads to track
phaseDetectionWindowSize int // Number of accesses to analyze for phase detection
// Active workloads
workloads map[string]*TrainingWorkloadInfo // workload ID -> info
inodeToWorkload map[uint64]string // inode -> workload ID mapping
// Pattern detection
datasetDetector *DatasetPatternDetector // Dataset pattern detector
// Optimization policies
defaultOptLevel OptimizationLevel // Default optimization level
adaptiveOptimization bool // Whether to automatically adjust optimization
// Statistics
totalWorkloads int64 // Total workloads seen
activeWorkloads int64 // Currently active workloads
optimizationEvents int64 // Number of optimization events
}
// NewTrainingOptimizer creates a new training optimizer
func NewTrainingOptimizer(datasetDetector *DatasetPatternDetector) *TrainingOptimizer {
return &TrainingOptimizer{
maxWorkloads: 10, // Track up to 10 concurrent training workloads
phaseDetectionWindowSize: 100, // Analyze last 100 accesses for phase detection
workloads: make(map[string]*TrainingWorkloadInfo),
inodeToWorkload: make(map[uint64]string),
datasetDetector: datasetDetector,
defaultOptLevel: OptimizationBalanced,
adaptiveOptimization: true,
}
}
// RegisterTrainingWorkload registers a new training workload
func (to *TrainingOptimizer) RegisterTrainingWorkload(workloadID string) *TrainingWorkloadInfo {
to.Lock()
defer to.Unlock()
workload := &TrainingWorkloadInfo{
WorkloadID: workloadID,
StartTime: time.Now(),
CurrentPhase: PhaseInitialization,
PhaseStartTime: time.Now(),
TrainingDatasets: make(map[uint64]*DatasetTraversalInfo),
ValidationDatasets: make(map[uint64]*DatasetTraversalInfo),
ModelFiles: make(map[uint64]*ModelFileInfo),
CheckpointFreq: 30 * time.Minute, // Default checkpoint frequency
OptimizationLevel: to.defaultOptLevel,
PrefetchStrategy: PrefetchBalanced,
CachePolicy: CachePolicyTrainingAware,
LossHistory: make([]float64, 0, 100),
}
to.workloads[workloadID] = workload
to.totalWorkloads++
to.activeWorkloads++
glog.V(1).Infof("Registered training workload: %s", workloadID)
return workload
}
// RecordFileAccess records a file access and associates it with training workload
func (to *TrainingOptimizer) RecordFileAccess(inode uint64, fileType MLFileType, offset int64, size int, isRead bool) {
to.RLock()
workloadID := to.inodeToWorkload[inode]
to.RUnlock()
if workloadID == "" {
// Try to detect workload based on file access patterns
workloadID = to.detectWorkloadFromAccess(inode, fileType, offset, size)
}
if workloadID == "" {
return // No associated workload
}
to.RLock()
workload := to.workloads[workloadID]
to.RUnlock()
if workload == nil {
return
}
workload.Lock()
defer workload.Unlock()
// Update workload statistics based on file type
switch fileType {
case MLFileDataset:
to.handleDatasetAccess(workload, inode, offset, size, isRead)
case MLFileModel:
to.handleModelAccess(workload, inode, offset, size, isRead)
default:
// General file access
to.handleGeneralAccess(workload, inode, offset, size, isRead)
}
// Detect training phase changes
to.detectPhaseChange(workload)
// Apply adaptive optimizations if enabled
if to.adaptiveOptimization {
to.applyAdaptiveOptimizations(workload)
}
}
// detectWorkloadFromAccess attempts to detect which workload a file access belongs to
func (to *TrainingOptimizer) detectWorkloadFromAccess(inode uint64, fileType MLFileType, offset int64, size int) string {
// Simple heuristic: assign to the most recently active workload
// In a more sophisticated implementation, this could use process tracking,
// directory structure analysis, or other heuristics
to.RLock()
defer to.RUnlock()
var latestWorkloadID string
latestTime := time.Time{}
for workloadID, workload := range to.workloads {
workload.RLock()
if workload.PhaseStartTime.After(latestTime) {
latestTime = workload.PhaseStartTime
latestWorkloadID = workloadID
}
workload.RUnlock()
}
if latestWorkloadID != "" {
to.Lock()
to.inodeToWorkload[inode] = latestWorkloadID
to.Unlock()
glog.V(4).Infof("Associated inode %d with workload %s", inode, latestWorkloadID)
}
return latestWorkloadID
}
// handleDatasetAccess processes dataset file access
func (to *TrainingOptimizer) handleDatasetAccess(workload *TrainingWorkloadInfo, inode uint64, offset int64, size int, isRead bool) {
if !isRead {
return // Dataset files are typically read-only during training
}
// Use dataset pattern detector to analyze access
if to.datasetDetector != nil {
datasetInfo := to.datasetDetector.RecordDatasetAccess(inode, offset, size, 0, false)
if datasetInfo != nil {
// Store dataset info in workload
if datasetInfo.ValidationAccess {
workload.ValidationDatasets[inode] = datasetInfo
} else {
workload.TrainingDatasets[inode] = datasetInfo
}
// Update workload metrics
if datasetInfo.EpochCount > workload.EpochsCompleted {
workload.EpochsCompleted = datasetInfo.EpochCount
}
if datasetInfo.ItemsPerSecond > 0 {
workload.ThroughputItems = datasetInfo.ItemsPerSecond
}
}
}
workload.BatchesProcessed++
}
// handleModelAccess processes model file access
func (to *TrainingOptimizer) handleModelAccess(workload *TrainingWorkloadInfo, inode uint64, offset int64, size int, isRead bool) {
modelInfo := workload.ModelFiles[inode]
if modelInfo == nil {
modelInfo = &ModelFileInfo{
FileType: to.detectModelFileType(inode, offset, size, isRead),
Size: int64(size),
LastModified: time.Now(),
}
workload.ModelFiles[inode] = modelInfo
}
modelInfo.Lock()
defer modelInfo.Unlock()
now := time.Now()
if isRead {
// Model loading
if modelInfo.LoadFrequency == 0 {
modelInfo.LoadFrequency = now.Sub(modelInfo.LastModified)
} else {
// Running average
freq := now.Sub(modelInfo.LastModified)
modelInfo.LoadFrequency = (modelInfo.LoadFrequency + freq) / 2
}
} else {
// Model saving (checkpoint)
if modelInfo.SaveFrequency == 0 {
modelInfo.SaveFrequency = now.Sub(modelInfo.LastModified)
} else {
freq := now.Sub(modelInfo.LastModified)
modelInfo.SaveFrequency = (modelInfo.SaveFrequency + freq) / 2
}
// Update checkpoint information
if modelInfo.IsCheckpoint {
workload.LastCheckpoint = now
if modelInfo.SaveFrequency > 0 {
workload.CheckpointFreq = modelInfo.SaveFrequency
}
}
}
modelInfo.LastModified = now
}
// handleGeneralAccess processes general file access
func (to *TrainingOptimizer) handleGeneralAccess(workload *TrainingWorkloadInfo, inode uint64, offset int64, size int, isRead bool) {
// For config files, logs, etc.
// This can be extended with specific handling for different file types
}
// detectModelFileType attempts to determine the type of model file
func (to *TrainingOptimizer) detectModelFileType(inode uint64, offset int64, size int, isRead bool) ModelFileType {
// Simple heuristics based on access patterns
// This could be enhanced with filename analysis, content analysis, etc.
if size > 100*1024*1024 { // Large files likely to be model weights or checkpoints
if isRead {
return ModelWeights
} else {
return ModelCheckpoint
}
}
if size < 1024 { // Small files likely to be metadata or config
return ModelMetadata
}
return ModelFileUnknown
}
// detectPhaseChange detects changes in training phase
func (to *TrainingOptimizer) detectPhaseChange(workload *TrainingWorkloadInfo) {
now := time.Now()
currentPhase := workload.CurrentPhase
// Simple phase detection heuristics
// In practice, this could be much more sophisticated
timeSincePhaseStart := now.Sub(workload.PhaseStartTime)
switch currentPhase {
case PhaseInitialization:
// Transition to training after initial period
if timeSincePhaseStart > 5*time.Minute && workload.BatchesProcessed > 10 {
to.transitionPhase(workload, PhaseTraining)
}
case PhaseTraining:
// Look for validation phase indicators
hasValidationActivity := len(workload.ValidationDatasets) > 0
for _, datasetInfo := range workload.ValidationDatasets {
datasetInfo.RLock()
recentActivity := now.Sub(datasetInfo.LastEpochStart) < 10*time.Minute
datasetInfo.RUnlock()
if recentActivity {
hasValidationActivity = true
break
}
}
if hasValidationActivity {
to.transitionPhase(workload, PhaseValidation)
}
// Check for checkpoint saving
if now.Sub(workload.LastCheckpoint) < 5*time.Minute {
to.transitionPhase(workload, PhaseSaveCheckpoint)
}
case PhaseValidation:
// Return to training after validation
if timeSincePhaseStart > 2*time.Minute {
to.transitionPhase(workload, PhaseTraining)
}
case PhaseSaveCheckpoint:
// Return to training after checkpoint
if timeSincePhaseStart > 1*time.Minute {
to.transitionPhase(workload, PhaseTraining)
}
}
}
// transitionPhase transitions workload to a new training phase
func (to *TrainingOptimizer) transitionPhase(workload *TrainingWorkloadInfo, newPhase TrainingPhase) {
oldPhase := workload.CurrentPhase
workload.CurrentPhase = newPhase
workload.PhaseStartTime = time.Now()
glog.V(2).Infof("Training phase transition: workload=%s, %v -> %v",
workload.WorkloadID, oldPhase, newPhase)
}
// applyAdaptiveOptimizations applies optimizations based on current workload state
func (to *TrainingOptimizer) applyAdaptiveOptimizations(workload *TrainingWorkloadInfo) {
// Adjust optimization level based on training phase and performance
switch workload.CurrentPhase {
case PhaseInitialization:
// Conservative during initialization
workload.OptimizationLevel = OptimizationBasic
workload.PrefetchStrategy = PrefetchConservative
case PhaseTraining:
// Aggressive optimization during training
workload.OptimizationLevel = OptimizationAggressive
workload.PrefetchStrategy = PrefetchAggressive
// If throughput is low, try maximum optimization
if workload.ThroughputItems > 0 && workload.ThroughputItems < 10 {
workload.OptimizationLevel = OptimizationMaximum
workload.PrefetchStrategy = PrefetchAdaptive
}
case PhaseValidation:
// Balanced optimization for validation
workload.OptimizationLevel = OptimizationBalanced
workload.PrefetchStrategy = PrefetchBalanced
case PhaseSaveCheckpoint:
// Focus on write optimization during checkpoints
workload.CachePolicy = CachePolicyML
workload.PrefetchStrategy = PrefetchConservative
}
to.optimizationEvents++
}
// GetWorkloadInfo returns information about a training workload
func (to *TrainingOptimizer) GetWorkloadInfo(workloadID string) *TrainingWorkloadInfo {
to.RLock()
defer to.RUnlock()
return to.workloads[workloadID]
}
// GetRecommendations returns optimization recommendations for a file
func (to *TrainingOptimizer) GetRecommendations(inode uint64) *OptimizationRecommendations {
to.RLock()
workloadID := to.inodeToWorkload[inode]
workload := to.workloads[workloadID]
to.RUnlock()
if workload == nil {
return &OptimizationRecommendations{}
}
workload.RLock()
defer workload.RUnlock()
recommendations := &OptimizationRecommendations{
PrefetchSize: 64 * 1024, // Default 64KB
ShouldCache: true,
CachePriority: CachePriorityNormal,
OptimizationLevel: workload.OptimizationLevel,
}
// Adjust recommendations based on file type and training phase
switch workload.CurrentPhase {
case PhaseTraining:
// Aggressive prefetching for training data
recommendations.PrefetchSize = 1024 * 1024 // 1MB
recommendations.ShouldCache = true
recommendations.CachePriority = CachePriorityHigh
case PhaseValidation:
// Conservative prefetching for validation
recommendations.PrefetchSize = 256 * 1024 // 256KB
recommendations.ShouldCache = true
recommendations.CachePriority = CachePriorityNormal
case PhaseSaveCheckpoint:
// Focus on write performance
recommendations.PrefetchSize = 0 // No prefetching during writes
recommendations.ShouldCache = false
recommendations.CachePriority = CachePriorityLow
}
// Check if this is a dataset file with specific patterns
if datasetInfo := workload.TrainingDatasets[inode]; datasetInfo != nil {
datasetInfo.RLock()
if datasetInfo.OptimalPrefetchSize > 0 {
recommendations.PrefetchSize = int(datasetInfo.OptimalPrefetchSize)
}
recommendations.ShouldCache = datasetInfo.ShouldCache
datasetInfo.RUnlock()
}
return recommendations
}
// OptimizationRecommendations holds recommendations for file access optimization
type OptimizationRecommendations struct {
PrefetchSize int `json:"prefetch_size"`
ShouldCache bool `json:"should_cache"`
CachePriority CachePriority `json:"cache_priority"`
OptimizationLevel OptimizationLevel `json:"optimization_level"`
}
// CachePriority represents priority levels for caching
type CachePriority int
const (
CachePriorityLow CachePriority = iota
CachePriorityNormal
CachePriorityHigh
CachePriorityUrgent
)
// GetTrainingMetrics returns comprehensive training optimization metrics
func (to *TrainingOptimizer) GetTrainingMetrics() TrainingOptimizerMetrics {
to.RLock()
defer to.RUnlock()
metrics := TrainingOptimizerMetrics{
TotalWorkloads: to.totalWorkloads,
ActiveWorkloads: to.activeWorkloads,
OptimizationEvents: to.optimizationEvents,
WorkloadPhases: make(map[TrainingPhase]int64),
}
// Aggregate workload statistics
for _, workload := range to.workloads {
workload.RLock()
metrics.WorkloadPhases[workload.CurrentPhase]++
metrics.TotalEpochs += int64(workload.EpochsCompleted)
metrics.TotalBatches += workload.BatchesProcessed
workload.RUnlock()
}
return metrics
}
// TrainingOptimizerMetrics holds metrics for training optimization
type TrainingOptimizerMetrics struct {
TotalWorkloads int64 `json:"total_workloads"`
ActiveWorkloads int64 `json:"active_workloads"`
TotalEpochs int64 `json:"total_epochs"`
TotalBatches int64 `json:"total_batches"`
OptimizationEvents int64 `json:"optimization_events"`
WorkloadPhases map[TrainingPhase]int64 `json:"workload_phases"`
}
// String methods for enums
func (tp TrainingPhase) String() string {
switch tp {
case PhaseInitialization:
return "Initialization"
case PhaseTraining:
return "Training"
case PhaseValidation:
return "Validation"
case PhaseSaveCheckpoint:
return "SaveCheckpoint"
case PhaseEvaluation:
return "Evaluation"
case PhaseInference:
return "Inference"
case PhaseHyperparamTuning:
return "HyperparamTuning"
default:
return "Unknown"
}
}
func (mft ModelFileType) String() string {
switch mft {
case ModelWeights:
return "Weights"
case ModelArchitecture:
return "Architecture"
case ModelOptimizer:
return "Optimizer"
case ModelCheckpoint:
return "Checkpoint"
case ModelMetadata:
return "Metadata"
default:
return "Unknown"
}
}
func (ol OptimizationLevel) String() string {
switch ol {
case OptimizationBasic:
return "Basic"
case OptimizationBalanced:
return "Balanced"
case OptimizationAggressive:
return "Aggressive"
case OptimizationMaximum:
return "Maximum"
default:
return "Basic"
}
}
func (ps PrefetchStrategy) String() string {
switch ps {
case PrefetchConservative:
return "Conservative"
case PrefetchBalanced:
return "Balanced"
case PrefetchAggressive:
return "Aggressive"
case PrefetchAdaptive:
return "Adaptive"
default:
return "Conservative"
}
}
|