1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
package needle_map
import (
"sort"
"sync"
. "github.com/seaweedfs/seaweedfs/weed/storage/types"
new_map "github.com/seaweedfs/seaweedfs/weed/storage/needle_map"
)
const (
MaxSectionBucketSize = 1024 * 8
LookBackWindowSize = 1024 // how many entries to look back when inserting into a section
)
type SectionalNeedleId uint32
const SectionalNeedleIdLimit = 1<<32 - 1
type SectionalNeedleValue struct {
Key SectionalNeedleId
OffsetLower OffsetLower `comment:"Volume offset"` //since aligned to 8 bytes, range is 4G*8=32G
Size Size `comment:"Size of the data portion"`
OffsetHigher OffsetHigher
}
type CompactSection struct {
sync.RWMutex
values []SectionalNeedleValue
overflow Overflow
start NeedleId
end NeedleId
}
type Overflow []SectionalNeedleValue
func NewCompactSection(start NeedleId) *CompactSection {
return &CompactSection{
values: make([]SectionalNeedleValue, 0),
overflow: Overflow(make([]SectionalNeedleValue, 0)),
start: start,
}
}
// return old entry size
func (cs *CompactSection) Set(key NeedleId, offset Offset, size Size) (oldOffset Offset, oldSize Size) {
cs.Lock()
defer cs.Unlock()
if key > cs.end {
cs.end = key
}
skey := SectionalNeedleId(key - cs.start)
if i := cs.binarySearchValues(skey); i >= 0 {
// update
oldOffset.OffsetHigher, oldOffset.OffsetLower, oldSize = cs.values[i].OffsetHigher, cs.values[i].OffsetLower, cs.values[i].Size
cs.values[i].OffsetHigher, cs.values[i].OffsetLower, cs.values[i].Size = offset.OffsetHigher, offset.OffsetLower, size
return
}
var lkey SectionalNeedleId
if len(cs.values) > 0 {
lkey = cs.values[len(cs.values)-1].Key
}
hasAdded := false
switch {
case len(cs.values) < MaxSectionBucketSize && lkey <= skey:
// non-overflow insert
cs.values = append(cs.values, SectionalNeedleValue{
Key: skey,
OffsetLower: offset.OffsetLower,
Size: size,
OffsetHigher: offset.OffsetHigher,
})
hasAdded = true
case len(cs.values) < MaxSectionBucketSize:
// still has capacity and only partially out of order
lookBackIndex := len(cs.values) - LookBackWindowSize
if lookBackIndex < 0 {
lookBackIndex = 0
}
if cs.values[lookBackIndex].Key <= skey {
for ; lookBackIndex < len(cs.values); lookBackIndex++ {
if cs.values[lookBackIndex].Key >= skey {
break
}
}
cs.values = append(cs.values, SectionalNeedleValue{})
copy(cs.values[lookBackIndex+1:], cs.values[lookBackIndex:])
cs.values[lookBackIndex].Key, cs.values[lookBackIndex].Size = skey, size
cs.values[lookBackIndex].OffsetLower, cs.values[lookBackIndex].OffsetHigher = offset.OffsetLower, offset.OffsetHigher
hasAdded = true
}
}
// overflow insert
if !hasAdded {
if oldValue, found := cs.findOverflowEntry(skey); found {
oldOffset.OffsetHigher, oldOffset.OffsetLower, oldSize = oldValue.OffsetHigher, oldValue.OffsetLower, oldValue.Size
}
cs.setOverflowEntry(skey, offset, size)
} else {
// if we maxed out our values bucket, pin its capacity to minimize memory usage
if len(cs.values) == MaxSectionBucketSize {
bucket := make([]SectionalNeedleValue, len(cs.values))
copy(bucket, cs.values)
cs.values = bucket
}
}
return
}
func (cs *CompactSection) setOverflowEntry(skey SectionalNeedleId, offset Offset, size Size) {
needleValue := SectionalNeedleValue{Key: skey, OffsetLower: offset.OffsetLower, Size: size, OffsetHigher: offset.OffsetHigher}
insertCandidate := sort.Search(len(cs.overflow), func(i int) bool {
return cs.overflow[i].Key >= needleValue.Key
})
if insertCandidate != len(cs.overflow) && cs.overflow[insertCandidate].Key == needleValue.Key {
cs.overflow[insertCandidate] = needleValue
return
}
cs.overflow = append(cs.overflow, SectionalNeedleValue{})
copy(cs.overflow[insertCandidate+1:], cs.overflow[insertCandidate:])
cs.overflow[insertCandidate] = needleValue
}
func (cs *CompactSection) findOverflowEntry(key SectionalNeedleId) (nv SectionalNeedleValue, found bool) {
foundCandidate := sort.Search(len(cs.overflow), func(i int) bool {
return cs.overflow[i].Key >= key
})
if foundCandidate != len(cs.overflow) && cs.overflow[foundCandidate].Key == key {
return cs.overflow[foundCandidate], true
}
return nv, false
}
func (cs *CompactSection) deleteOverflowEntry(key SectionalNeedleId) {
length := len(cs.overflow)
deleteCandidate := sort.Search(length, func(i int) bool {
return cs.overflow[i].Key >= key
})
if deleteCandidate != length && cs.overflow[deleteCandidate].Key == key {
if cs.overflow[deleteCandidate].Size.IsValid() {
cs.overflow[deleteCandidate].Size = -cs.overflow[deleteCandidate].Size
}
}
}
// return old entry size
func (cs *CompactSection) Delete(key NeedleId) Size {
cs.Lock()
defer cs.Unlock()
ret := Size(0)
if key > cs.end {
return ret
}
skey := SectionalNeedleId(key - cs.start)
if i := cs.binarySearchValues(skey); i >= 0 {
if cs.values[i].Size > 0 && cs.values[i].Size.IsValid() {
ret = cs.values[i].Size
cs.values[i].Size = -cs.values[i].Size
}
}
if v, found := cs.findOverflowEntry(skey); found {
cs.deleteOverflowEntry(skey)
ret = v.Size
}
return ret
}
func (cs *CompactSection) Get(key NeedleId) (*new_map.NeedleValue, bool) {
cs.RLock()
defer cs.RUnlock()
if key > cs.end {
return nil, false
}
skey := SectionalNeedleId(key - cs.start)
if v, ok := cs.findOverflowEntry(skey); ok {
nv := toNeedleValue(v, cs)
return &nv, true
}
if i := cs.binarySearchValues(skey); i >= 0 {
nv := toNeedleValue(cs.values[i], cs)
return &nv, true
}
return nil, false
}
func (cs *CompactSection) binarySearchValues(key SectionalNeedleId) int {
x := sort.Search(len(cs.values), func(i int) bool {
return cs.values[i].Key >= key
})
if x >= len(cs.values) {
return -1
}
if cs.values[x].Key > key {
return -2
}
return x
}
// This map assumes mostly inserting increasing keys
// This map assumes mostly inserting increasing keys
type CompactMap struct {
list []*CompactSection
}
func NewCompactMap() *CompactMap {
return &CompactMap{}
}
func (cm *CompactMap) Set(key NeedleId, offset Offset, size Size) (oldOffset Offset, oldSize Size) {
x := cm.binarySearchCompactSection(key)
if x < 0 || (key-cm.list[x].start) > SectionalNeedleIdLimit {
// println(x, "adding to existing", len(cm.list), "sections, starting", key)
cs := NewCompactSection(key)
cm.list = append(cm.list, cs)
x = len(cm.list) - 1
//keep compact section sorted by start
for x >= 0 {
if x > 0 && cm.list[x-1].start > key {
cm.list[x] = cm.list[x-1]
// println("shift", x, "start", cs.start, "to", x-1)
x = x - 1
} else {
cm.list[x] = cs
// println("cs", x, "start", cs.start)
break
}
}
}
// println(key, "set to section[", x, "].start", cm.list[x].start)
return cm.list[x].Set(key, offset, size)
}
func (cm *CompactMap) Delete(key NeedleId) Size {
x := cm.binarySearchCompactSection(key)
if x < 0 {
return Size(0)
}
return cm.list[x].Delete(key)
}
func (cm *CompactMap) Get(key NeedleId) (*new_map.NeedleValue, bool) {
x := cm.binarySearchCompactSection(key)
if x < 0 {
return nil, false
}
return cm.list[x].Get(key)
}
func (cm *CompactMap) binarySearchCompactSection(key NeedleId) int {
l, h := 0, len(cm.list)-1
if h < 0 {
return -5
}
if cm.list[h].start <= key {
if len(cm.list[h].values) < MaxSectionBucketSize || key <= cm.list[h].end {
return h
}
return -4
}
for l <= h {
m := (l + h) / 2
if key < cm.list[m].start {
h = m - 1
} else { // cm.list[m].start <= key
if cm.list[m+1].start <= key {
l = m + 1
} else {
return m
}
}
}
return -3
}
// Visit visits all entries or stop if any error when visiting
func (cm *CompactMap) AscendingVisit(visit func(new_map.NeedleValue) error) error {
for _, cs := range cm.list {
cs.RLock()
var i, j int
for i, j = 0, 0; i < len(cs.overflow) && j < len(cs.values); {
if cs.overflow[i].Key < cs.values[j].Key {
if err := visit(toNeedleValue(cs.overflow[i], cs)); err != nil {
cs.RUnlock()
return err
}
i++
} else if cs.overflow[i].Key == cs.values[j].Key {
j++
} else {
if err := visit(toNeedleValue(cs.values[j], cs)); err != nil {
cs.RUnlock()
return err
}
j++
}
}
for ; i < len(cs.overflow); i++ {
if err := visit(toNeedleValue(cs.overflow[i], cs)); err != nil {
cs.RUnlock()
return err
}
}
for ; j < len(cs.values); j++ {
if err := visit(toNeedleValue(cs.values[j], cs)); err != nil {
cs.RUnlock()
return err
}
}
cs.RUnlock()
}
return nil
}
func toNeedleValue(snv SectionalNeedleValue, cs *CompactSection) new_map.NeedleValue {
offset := Offset{
OffsetHigher: snv.OffsetHigher,
OffsetLower: snv.OffsetLower,
}
return new_map.NeedleValue{Key: NeedleId(snv.Key) + cs.start, Offset: offset, Size: snv.Size}
}
func toSectionalNeedleValue(nv new_map.NeedleValue, cs *CompactSection) SectionalNeedleValue {
return SectionalNeedleValue{
Key: SectionalNeedleId(nv.Key - cs.start),
OffsetLower: nv.Offset.OffsetLower,
Size: nv.Size,
OffsetHigher: nv.Offset.OffsetHigher,
}
}
|