1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
//! IPC (Inter-Process Communication) module for communicating with Go sidecar
//!
//! This module handles high-performance IPC between the Rust RDMA engine and
//! the Go control plane sidecar using Unix domain sockets and MessagePack serialization.
use crate::{RdmaError, RdmaResult, rdma::RdmaContext, session::SessionManager};
use serde::{Deserialize, Serialize};
use std::sync::Arc;
use std::sync::atomic::{AtomicU64, Ordering};
use tokio::net::{UnixListener, UnixStream};
use tokio::io::{AsyncReadExt, AsyncWriteExt, BufReader, BufWriter};
use tracing::{info, debug, error};
use uuid::Uuid;
use std::path::Path;
/// Atomic counter for generating unique work request IDs
/// This ensures no hash collisions that could cause incorrect completion handling
static NEXT_WR_ID: AtomicU64 = AtomicU64::new(1);
/// IPC message types between Go sidecar and Rust RDMA engine
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "type", content = "data")]
pub enum IpcMessage {
/// Request to start an RDMA read operation
StartRead(StartReadRequest),
/// Response with RDMA session information
StartReadResponse(StartReadResponse),
/// Request to complete an RDMA operation
CompleteRead(CompleteReadRequest),
/// Response confirming completion
CompleteReadResponse(CompleteReadResponse),
/// Request for engine capabilities
GetCapabilities(GetCapabilitiesRequest),
/// Response with engine capabilities
GetCapabilitiesResponse(GetCapabilitiesResponse),
/// Health check ping
Ping(PingRequest),
/// Ping response
Pong(PongResponse),
/// Error response
Error(ErrorResponse),
}
/// Request to start RDMA read operation
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct StartReadRequest {
/// Volume ID in SeaweedFS
pub volume_id: u32,
/// Needle ID in SeaweedFS
pub needle_id: u64,
/// Needle cookie for validation
pub cookie: u32,
/// File offset within the needle data
pub offset: u64,
/// Size to read (0 = entire needle)
pub size: u64,
/// Remote memory address from Go sidecar
pub remote_addr: u64,
/// Remote key for RDMA access
pub remote_key: u32,
/// Session timeout in seconds
pub timeout_secs: u64,
/// Authentication token (optional)
pub auth_token: Option<String>,
}
/// Response with RDMA session details
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct StartReadResponse {
/// Unique session identifier
pub session_id: String,
/// Local buffer address for RDMA
pub local_addr: u64,
/// Local key for RDMA operations
pub local_key: u32,
/// Actual size that will be transferred
pub transfer_size: u64,
/// Expected CRC checksum
pub expected_crc: u32,
/// Session expiration timestamp (Unix nanoseconds)
pub expires_at_ns: u64,
}
/// Request to complete RDMA operation
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct CompleteReadRequest {
/// Session ID to complete
pub session_id: String,
/// Whether the operation was successful
pub success: bool,
/// Actual bytes transferred
pub bytes_transferred: u64,
/// Client-computed CRC (for verification)
pub client_crc: Option<u32>,
/// Error message if failed
pub error_message: Option<String>,
}
/// Response confirming completion
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct CompleteReadResponse {
/// Whether completion was successful
pub success: bool,
/// Server-computed CRC for verification
pub server_crc: Option<u32>,
/// Any cleanup messages
pub message: Option<String>,
}
/// Request for engine capabilities
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct GetCapabilitiesRequest {
/// Client identifier
pub client_id: Option<String>,
}
/// Response with engine capabilities
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct GetCapabilitiesResponse {
/// RDMA device name
pub device_name: String,
/// RDMA device vendor ID
pub vendor_id: u32,
/// Maximum transfer size in bytes
pub max_transfer_size: u64,
/// Maximum concurrent sessions
pub max_sessions: usize,
/// Current active sessions
pub active_sessions: usize,
/// Device port GID
pub port_gid: String,
/// Device port LID
pub port_lid: u16,
/// Supported authentication methods
pub supported_auth: Vec<String>,
/// Engine version
pub version: String,
/// Whether real RDMA hardware is available
pub real_rdma: bool,
}
/// Health check ping request
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PingRequest {
/// Client timestamp (Unix nanoseconds)
pub timestamp_ns: u64,
/// Client identifier
pub client_id: Option<String>,
}
/// Ping response
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PongResponse {
/// Original client timestamp
pub client_timestamp_ns: u64,
/// Server timestamp (Unix nanoseconds)
pub server_timestamp_ns: u64,
/// Round-trip time in nanoseconds (server perspective)
pub server_rtt_ns: u64,
}
/// Error response
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ErrorResponse {
/// Error code
pub code: String,
/// Human-readable error message
pub message: String,
/// Error category
pub category: String,
/// Whether the error is recoverable
pub recoverable: bool,
}
impl From<&RdmaError> for ErrorResponse {
fn from(error: &RdmaError) -> Self {
Self {
code: format!("{:?}", error),
message: error.to_string(),
category: error.category().to_string(),
recoverable: error.is_recoverable(),
}
}
}
/// IPC server handling communication with Go sidecar
pub struct IpcServer {
socket_path: String,
listener: Option<UnixListener>,
rdma_context: Arc<RdmaContext>,
session_manager: Arc<SessionManager>,
shutdown_flag: Arc<parking_lot::RwLock<bool>>,
}
impl IpcServer {
/// Create new IPC server
pub async fn new(
socket_path: &str,
rdma_context: Arc<RdmaContext>,
session_manager: Arc<SessionManager>,
) -> RdmaResult<Self> {
// Remove existing socket if it exists
if Path::new(socket_path).exists() {
std::fs::remove_file(socket_path)
.map_err(|e| RdmaError::ipc_error(format!("Failed to remove existing socket: {}", e)))?;
}
Ok(Self {
socket_path: socket_path.to_string(),
listener: None,
rdma_context,
session_manager,
shutdown_flag: Arc::new(parking_lot::RwLock::new(false)),
})
}
/// Start the IPC server
pub async fn run(&mut self) -> RdmaResult<()> {
let listener = UnixListener::bind(&self.socket_path)
.map_err(|e| RdmaError::ipc_error(format!("Failed to bind Unix socket: {}", e)))?;
info!("🎯 IPC server listening on: {}", self.socket_path);
self.listener = Some(listener);
if let Some(ref listener) = self.listener {
loop {
// Check shutdown flag
if *self.shutdown_flag.read() {
info!("IPC server shutting down");
break;
}
// Accept connection with timeout
let accept_result = tokio::time::timeout(
tokio::time::Duration::from_millis(100),
listener.accept()
).await;
match accept_result {
Ok(Ok((stream, addr))) => {
debug!("New IPC connection from: {:?}", addr);
// Spawn handler for this connection
let rdma_context = self.rdma_context.clone();
let session_manager = self.session_manager.clone();
let shutdown_flag = self.shutdown_flag.clone();
tokio::spawn(async move {
if let Err(e) = Self::handle_connection(stream, rdma_context, session_manager, shutdown_flag).await {
error!("IPC connection error: {}", e);
}
});
}
Ok(Err(e)) => {
error!("Failed to accept IPC connection: {}", e);
tokio::time::sleep(tokio::time::Duration::from_millis(100)).await;
}
Err(_) => {
// Timeout - continue loop to check shutdown flag
continue;
}
}
}
}
Ok(())
}
/// Handle a single IPC connection
async fn handle_connection(
stream: UnixStream,
rdma_context: Arc<RdmaContext>,
session_manager: Arc<SessionManager>,
shutdown_flag: Arc<parking_lot::RwLock<bool>>,
) -> RdmaResult<()> {
let (reader_half, writer_half) = stream.into_split();
let mut reader = BufReader::new(reader_half);
let mut writer = BufWriter::new(writer_half);
let mut buffer = Vec::with_capacity(4096);
loop {
// Check shutdown
if *shutdown_flag.read() {
break;
}
// Read message length (4 bytes)
let mut len_bytes = [0u8; 4];
match tokio::time::timeout(
tokio::time::Duration::from_millis(100),
reader.read_exact(&mut len_bytes)
).await {
Ok(Ok(_)) => {},
Ok(Err(e)) if e.kind() == std::io::ErrorKind::UnexpectedEof => {
debug!("IPC connection closed by peer");
break;
}
Ok(Err(e)) => return Err(RdmaError::ipc_error(format!("Read error: {}", e))),
Err(_) => continue, // Timeout, check shutdown flag
}
let msg_len = u32::from_le_bytes(len_bytes) as usize;
if msg_len > 1024 * 1024 { // 1MB max message size
return Err(RdmaError::ipc_error("Message too large"));
}
// Read message data
buffer.clear();
buffer.resize(msg_len, 0);
reader.read_exact(&mut buffer).await
.map_err(|e| RdmaError::ipc_error(format!("Failed to read message: {}", e)))?;
// Deserialize message
let request: IpcMessage = rmp_serde::from_slice(&buffer)
.map_err(|e| RdmaError::SerializationError { reason: e.to_string() })?;
debug!("Received IPC message: {:?}", request);
// Process message
let response = Self::process_message(
request,
&rdma_context,
&session_manager,
).await;
// Serialize response
let response_data = rmp_serde::to_vec(&response)
.map_err(|e| RdmaError::SerializationError { reason: e.to_string() })?;
// Send response
let response_len = (response_data.len() as u32).to_le_bytes();
writer.write_all(&response_len).await
.map_err(|e| RdmaError::ipc_error(format!("Failed to write response length: {}", e)))?;
writer.write_all(&response_data).await
.map_err(|e| RdmaError::ipc_error(format!("Failed to write response: {}", e)))?;
writer.flush().await
.map_err(|e| RdmaError::ipc_error(format!("Failed to flush response: {}", e)))?;
debug!("Sent IPC response");
}
Ok(())
}
/// Process IPC message and generate response
async fn process_message(
message: IpcMessage,
rdma_context: &Arc<RdmaContext>,
session_manager: &Arc<SessionManager>,
) -> IpcMessage {
match message {
IpcMessage::Ping(req) => {
let server_timestamp = chrono::Utc::now().timestamp_nanos_opt().unwrap_or(0) as u64;
IpcMessage::Pong(PongResponse {
client_timestamp_ns: req.timestamp_ns,
server_timestamp_ns: server_timestamp,
server_rtt_ns: server_timestamp.saturating_sub(req.timestamp_ns),
})
}
IpcMessage::GetCapabilities(_req) => {
let device_info = rdma_context.device_info();
let active_sessions = session_manager.active_session_count().await;
IpcMessage::GetCapabilitiesResponse(GetCapabilitiesResponse {
device_name: device_info.name.clone(),
vendor_id: device_info.vendor_id,
max_transfer_size: device_info.max_mr_size,
max_sessions: session_manager.max_sessions(),
active_sessions,
port_gid: device_info.port_gid.clone(),
port_lid: device_info.port_lid,
supported_auth: vec!["none".to_string()],
version: env!("CARGO_PKG_VERSION").to_string(),
real_rdma: cfg!(feature = "real-ucx"),
})
}
IpcMessage::StartRead(req) => {
match Self::handle_start_read(req, rdma_context, session_manager).await {
Ok(response) => IpcMessage::StartReadResponse(response),
Err(error) => IpcMessage::Error(ErrorResponse::from(&error)),
}
}
IpcMessage::CompleteRead(req) => {
match Self::handle_complete_read(req, session_manager).await {
Ok(response) => IpcMessage::CompleteReadResponse(response),
Err(error) => IpcMessage::Error(ErrorResponse::from(&error)),
}
}
_ => IpcMessage::Error(ErrorResponse {
code: "UNSUPPORTED_MESSAGE".to_string(),
message: "Unsupported message type".to_string(),
category: "request".to_string(),
recoverable: true,
}),
}
}
/// Handle StartRead request
async fn handle_start_read(
req: StartReadRequest,
rdma_context: &Arc<RdmaContext>,
session_manager: &Arc<SessionManager>,
) -> RdmaResult<StartReadResponse> {
info!("🚀 Starting RDMA read: volume={}, needle={}, size={}",
req.volume_id, req.needle_id, req.size);
// Create session
let session_id = Uuid::new_v4().to_string();
let transfer_size = if req.size == 0 { 65536 } else { req.size }; // Default 64KB
// Allocate local buffer
let buffer = vec![0u8; transfer_size as usize];
let local_addr = buffer.as_ptr() as u64;
// Register memory for RDMA
let memory_region = rdma_context.register_memory(local_addr, transfer_size as usize).await?;
// Create and store session
session_manager.create_session(
session_id.clone(),
req.volume_id,
req.needle_id,
req.remote_addr,
req.remote_key,
transfer_size,
buffer,
memory_region.clone(),
chrono::Duration::seconds(req.timeout_secs as i64),
).await?;
// Perform RDMA read with unique work request ID
// Use atomic counter to avoid hash collisions that could cause incorrect completion handling
let wr_id = NEXT_WR_ID.fetch_add(1, Ordering::Relaxed);
rdma_context.post_read(
local_addr,
req.remote_addr,
req.remote_key,
transfer_size as usize,
wr_id,
).await?;
// Poll for completion
let completions = rdma_context.poll_completion(1).await?;
if completions.is_empty() {
return Err(RdmaError::operation_failed("RDMA read", -1));
}
let completion = &completions[0];
if completion.status != crate::rdma::CompletionStatus::Success {
return Err(RdmaError::operation_failed("RDMA read", completion.status as i32));
}
info!("✅ RDMA read completed: {} bytes", completion.byte_len);
let expires_at = chrono::Utc::now() + chrono::Duration::seconds(req.timeout_secs as i64);
Ok(StartReadResponse {
session_id,
local_addr,
local_key: memory_region.lkey,
transfer_size,
expected_crc: 0x12345678, // Mock CRC
expires_at_ns: expires_at.timestamp_nanos_opt().unwrap_or(0) as u64,
})
}
/// Handle CompleteRead request
async fn handle_complete_read(
req: CompleteReadRequest,
session_manager: &Arc<SessionManager>,
) -> RdmaResult<CompleteReadResponse> {
info!("🏁 Completing RDMA read session: {}", req.session_id);
// Clean up session
session_manager.remove_session(&req.session_id).await?;
Ok(CompleteReadResponse {
success: req.success,
server_crc: Some(0x12345678), // Mock CRC
message: Some("Session completed successfully".to_string()),
})
}
/// Shutdown the IPC server
pub async fn shutdown(&mut self) -> RdmaResult<()> {
info!("Shutting down IPC server");
*self.shutdown_flag.write() = true;
// Remove socket file
if Path::new(&self.socket_path).exists() {
std::fs::remove_file(&self.socket_path)
.map_err(|e| RdmaError::ipc_error(format!("Failed to remove socket file: {}", e)))?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_error_response_conversion() {
let error = RdmaError::device_not_found("mlx5_0");
let response = ErrorResponse::from(&error);
assert!(response.message.contains("mlx5_0"));
assert_eq!(response.category, "hardware");
assert!(!response.recoverable);
}
#[test]
fn test_message_serialization() {
let request = IpcMessage::Ping(PingRequest {
timestamp_ns: 12345,
client_id: Some("test".to_string()),
});
let serialized = rmp_serde::to_vec(&request).unwrap();
let deserialized: IpcMessage = rmp_serde::from_slice(&serialized).unwrap();
match deserialized {
IpcMessage::Ping(ping) => {
assert_eq!(ping.timestamp_ns, 12345);
assert_eq!(ping.client_id, Some("test".to_string()));
}
_ => panic!("Wrong message type"),
}
}
}
|