1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
package protocol
import (
"bytes"
"encoding/binary"
"fmt"
"hash/crc32"
"testing"
"time"
"github.com/seaweedfs/seaweedfs/weed/mq/kafka/integration"
)
// TestBatchConstruction tests that our batch construction produces valid CRC
func TestBatchConstruction(t *testing.T) {
// Create test data
key := []byte("test-key")
value := []byte("test-value")
timestamp := time.Now()
// Build batch using our implementation
batch := constructTestBatch(0, timestamp, key, value)
t.Logf("Batch size: %d bytes", len(batch))
t.Logf("Batch hex:\n%s", hexDumpTest(batch))
// Extract and verify CRC
if len(batch) < 21 {
t.Fatalf("Batch too short: %d bytes", len(batch))
}
storedCRC := binary.BigEndian.Uint32(batch[17:21])
t.Logf("Stored CRC: 0x%08x", storedCRC)
// Recalculate CRC from the data
crcData := batch[21:]
calculatedCRC := crc32.Checksum(crcData, crc32.MakeTable(crc32.Castagnoli))
t.Logf("Calculated CRC: 0x%08x (over %d bytes)", calculatedCRC, len(crcData))
if storedCRC != calculatedCRC {
t.Errorf("CRC mismatch: stored=0x%08x calculated=0x%08x", storedCRC, calculatedCRC)
// Debug: show what bytes the CRC is calculated over
t.Logf("CRC data (first 100 bytes):")
dumpSize := 100
if len(crcData) < dumpSize {
dumpSize = len(crcData)
}
for i := 0; i < dumpSize; i += 16 {
end := i + 16
if end > dumpSize {
end = dumpSize
}
t.Logf(" %04d: %x", i, crcData[i:end])
}
} else {
t.Log("CRC verification PASSED")
}
// Verify batch structure
t.Log("\n=== Batch Structure ===")
verifyField(t, "Base Offset", batch[0:8], binary.BigEndian.Uint64(batch[0:8]))
verifyField(t, "Batch Length", batch[8:12], binary.BigEndian.Uint32(batch[8:12]))
verifyField(t, "Leader Epoch", batch[12:16], int32(binary.BigEndian.Uint32(batch[12:16])))
verifyField(t, "Magic", batch[16:17], batch[16])
verifyField(t, "CRC", batch[17:21], binary.BigEndian.Uint32(batch[17:21]))
verifyField(t, "Attributes", batch[21:23], binary.BigEndian.Uint16(batch[21:23]))
verifyField(t, "Last Offset Delta", batch[23:27], binary.BigEndian.Uint32(batch[23:27]))
verifyField(t, "Base Timestamp", batch[27:35], binary.BigEndian.Uint64(batch[27:35]))
verifyField(t, "Max Timestamp", batch[35:43], binary.BigEndian.Uint64(batch[35:43]))
verifyField(t, "Record Count", batch[57:61], binary.BigEndian.Uint32(batch[57:61]))
// Verify the batch length field is correct
expectedBatchLength := uint32(len(batch) - 12)
actualBatchLength := binary.BigEndian.Uint32(batch[8:12])
if expectedBatchLength != actualBatchLength {
t.Errorf("Batch length mismatch: expected=%d actual=%d", expectedBatchLength, actualBatchLength)
} else {
t.Logf("Batch length correct: %d", actualBatchLength)
}
}
// TestMultipleRecordsBatch tests batch construction with multiple records
func TestMultipleRecordsBatch(t *testing.T) {
timestamp := time.Now()
// We can't easily test multiple records without the full implementation
// So let's test that our single record batch matches expected structure
batch1 := constructTestBatch(0, timestamp, []byte("key1"), []byte("value1"))
batch2 := constructTestBatch(1, timestamp, []byte("key2"), []byte("value2"))
t.Logf("Batch 1 size: %d, CRC: 0x%08x", len(batch1), binary.BigEndian.Uint32(batch1[17:21]))
t.Logf("Batch 2 size: %d, CRC: 0x%08x", len(batch2), binary.BigEndian.Uint32(batch2[17:21]))
// Verify both batches have valid CRCs
for i, batch := range [][]byte{batch1, batch2} {
storedCRC := binary.BigEndian.Uint32(batch[17:21])
calculatedCRC := crc32.Checksum(batch[21:], crc32.MakeTable(crc32.Castagnoli))
if storedCRC != calculatedCRC {
t.Errorf("Batch %d CRC mismatch: stored=0x%08x calculated=0x%08x", i+1, storedCRC, calculatedCRC)
} else {
t.Logf("Batch %d CRC valid", i+1)
}
}
}
// TestVarintEncoding tests our varint encoding implementation
func TestVarintEncoding(t *testing.T) {
testCases := []struct {
value int64
expected []byte
}{
{0, []byte{0x00}},
{1, []byte{0x02}},
{-1, []byte{0x01}},
{5, []byte{0x0a}},
{-5, []byte{0x09}},
{127, []byte{0xfe, 0x01}},
{128, []byte{0x80, 0x02}},
{-127, []byte{0xfd, 0x01}},
{-128, []byte{0xff, 0x01}},
}
for _, tc := range testCases {
result := encodeVarint(tc.value)
if !bytes.Equal(result, tc.expected) {
t.Errorf("encodeVarint(%d) = %x, expected %x", tc.value, result, tc.expected)
} else {
t.Logf("encodeVarint(%d) = %x", tc.value, result)
}
}
}
// constructTestBatch builds a batch using our implementation
func constructTestBatch(baseOffset int64, timestamp time.Time, key, value []byte) []byte {
batch := make([]byte, 0, 256)
// Base offset (0-7)
baseOffsetBytes := make([]byte, 8)
binary.BigEndian.PutUint64(baseOffsetBytes, uint64(baseOffset))
batch = append(batch, baseOffsetBytes...)
// Batch length placeholder (8-11)
batchLengthPos := len(batch)
batch = append(batch, 0, 0, 0, 0)
// Partition leader epoch (12-15)
batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF)
// Magic (16)
batch = append(batch, 0x02)
// CRC placeholder (17-20)
crcPos := len(batch)
batch = append(batch, 0, 0, 0, 0)
// Attributes (21-22)
batch = append(batch, 0, 0)
// Last offset delta (23-26)
batch = append(batch, 0, 0, 0, 0)
// Base timestamp (27-34)
timestampMs := timestamp.UnixMilli()
timestampBytes := make([]byte, 8)
binary.BigEndian.PutUint64(timestampBytes, uint64(timestampMs))
batch = append(batch, timestampBytes...)
// Max timestamp (35-42)
batch = append(batch, timestampBytes...)
// Producer ID (43-50)
batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF)
// Producer epoch (51-52)
batch = append(batch, 0xFF, 0xFF)
// Base sequence (53-56)
batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF)
// Record count (57-60)
recordCountBytes := make([]byte, 4)
binary.BigEndian.PutUint32(recordCountBytes, 1)
batch = append(batch, recordCountBytes...)
// Build record (61+)
recordBody := []byte{}
// Attributes
recordBody = append(recordBody, 0)
// Timestamp delta
recordBody = append(recordBody, encodeVarint(0)...)
// Offset delta
recordBody = append(recordBody, encodeVarint(0)...)
// Key length and key
if key == nil {
recordBody = append(recordBody, encodeVarint(-1)...)
} else {
recordBody = append(recordBody, encodeVarint(int64(len(key)))...)
recordBody = append(recordBody, key...)
}
// Value length and value
if value == nil {
recordBody = append(recordBody, encodeVarint(-1)...)
} else {
recordBody = append(recordBody, encodeVarint(int64(len(value)))...)
recordBody = append(recordBody, value...)
}
// Headers count
recordBody = append(recordBody, encodeVarint(0)...)
// Prepend record length
recordLength := int64(len(recordBody))
batch = append(batch, encodeVarint(recordLength)...)
batch = append(batch, recordBody...)
// Fill in batch length
batchLength := uint32(len(batch) - 12)
binary.BigEndian.PutUint32(batch[batchLengthPos:], batchLength)
// Calculate CRC
crcData := batch[21:]
crc := crc32.Checksum(crcData, crc32.MakeTable(crc32.Castagnoli))
binary.BigEndian.PutUint32(batch[crcPos:], crc)
return batch
}
// verifyField logs a field's value
func verifyField(t *testing.T, name string, bytes []byte, value interface{}) {
t.Logf(" %s: %x (value: %v)", name, bytes, value)
}
// hexDump formats bytes as hex dump
func hexDumpTest(data []byte) string {
var buf bytes.Buffer
for i := 0; i < len(data); i += 16 {
end := i + 16
if end > len(data) {
end = len(data)
}
buf.WriteString(fmt.Sprintf(" %04d: %x\n", i, data[i:end]))
}
return buf.String()
}
// TestClientSideCRCValidation mimics what a Kafka client does
func TestClientSideCRCValidation(t *testing.T) {
// Build a batch
batch := constructTestBatch(0, time.Now(), []byte("test-key"), []byte("test-value"))
t.Logf("Constructed batch: %d bytes", len(batch))
// Now pretend we're a Kafka client receiving this batch
// Step 1: Read the batch header to get the CRC
if len(batch) < 21 {
t.Fatalf("Batch too short for client to read CRC")
}
clientReadCRC := binary.BigEndian.Uint32(batch[17:21])
t.Logf("Client read CRC from header: 0x%08x", clientReadCRC)
// Step 2: Calculate CRC over the data (from byte 21 onwards)
clientCalculatedCRC := crc32.Checksum(batch[21:], crc32.MakeTable(crc32.Castagnoli))
t.Logf("Client calculated CRC: 0x%08x", clientCalculatedCRC)
// Step 3: Compare
if clientReadCRC != clientCalculatedCRC {
t.Errorf("CLIENT WOULD REJECT: CRC mismatch: read=0x%08x calculated=0x%08x",
clientReadCRC, clientCalculatedCRC)
t.Log("This is the error consumers are seeing!")
} else {
t.Log("CLIENT WOULD ACCEPT: CRC valid")
}
}
// TestConcurrentBatchConstruction tests if there are race conditions
func TestConcurrentBatchConstruction(t *testing.T) {
timestamp := time.Now()
// Build multiple batches concurrently
const numBatches = 10
results := make(chan bool, numBatches)
for i := 0; i < numBatches; i++ {
go func(id int) {
batch := constructTestBatch(int64(id), timestamp,
[]byte(fmt.Sprintf("key-%d", id)),
[]byte(fmt.Sprintf("value-%d", id)))
// Validate CRC
storedCRC := binary.BigEndian.Uint32(batch[17:21])
calculatedCRC := crc32.Checksum(batch[21:], crc32.MakeTable(crc32.Castagnoli))
results <- (storedCRC == calculatedCRC)
}(i)
}
// Check all results
allValid := true
for i := 0; i < numBatches; i++ {
if !<-results {
allValid = false
t.Errorf("Batch %d has invalid CRC", i)
}
}
if allValid {
t.Logf("All %d concurrent batches have valid CRCs", numBatches)
}
}
// TestProductionBatchConstruction tests the actual production code
func TestProductionBatchConstruction(t *testing.T) {
// Create a mock SMQ record
mockRecord := &mockSMQRecord{
key: []byte("prod-key"),
value: []byte("prod-value"),
timestamp: time.Now().UnixNano(),
}
// Create a mock handler
mockHandler := &Handler{}
// Create fetcher
fetcher := NewMultiBatchFetcher(mockHandler)
// Construct batch using production code
batch := fetcher.constructSingleRecordBatch("test-topic", 0, []integration.SMQRecord{mockRecord})
t.Logf("Production batch size: %d bytes", len(batch))
// Validate CRC
if len(batch) < 21 {
t.Fatalf("Production batch too short: %d bytes", len(batch))
}
storedCRC := binary.BigEndian.Uint32(batch[17:21])
calculatedCRC := crc32.Checksum(batch[21:], crc32.MakeTable(crc32.Castagnoli))
t.Logf("Production batch CRC: stored=0x%08x calculated=0x%08x", storedCRC, calculatedCRC)
if storedCRC != calculatedCRC {
t.Errorf("PRODUCTION CODE CRC INVALID: stored=0x%08x calculated=0x%08x", storedCRC, calculatedCRC)
t.Log("This means the production constructSingleRecordBatch has a bug!")
} else {
t.Log("PRODUCTION CODE CRC VALID")
}
}
// mockSMQRecord implements the SMQRecord interface for testing
type mockSMQRecord struct {
key []byte
value []byte
timestamp int64
}
func (m *mockSMQRecord) GetKey() []byte { return m.key }
func (m *mockSMQRecord) GetValue() []byte { return m.value }
func (m *mockSMQRecord) GetTimestamp() int64 { return m.timestamp }
func (m *mockSMQRecord) GetOffset() int64 { return 0 }
|