aboutsummaryrefslogtreecommitdiff
path: root/weed/mq/kafka/protocol/fetch.go
blob: 58a96f5d8b65985a34dbeaa24080b880dfa79f11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
package protocol

import (
	"context"
	"encoding/binary"
	"fmt"
	"hash/crc32"
	"strings"
	"time"
	"unicode/utf8"

	"github.com/seaweedfs/seaweedfs/weed/glog"
	"github.com/seaweedfs/seaweedfs/weed/mq/kafka/compression"
	"github.com/seaweedfs/seaweedfs/weed/mq/kafka/integration"
	"github.com/seaweedfs/seaweedfs/weed/mq/kafka/schema"
	"github.com/seaweedfs/seaweedfs/weed/pb/schema_pb"
	"google.golang.org/protobuf/proto"
)

// partitionFetchResult holds the result of fetching from a single partition
type partitionFetchResult struct {
	topicIndex     int
	partitionIndex int
	recordBatch    []byte
	highWaterMark  int64
	errorCode      int16
	fetchDuration  time.Duration
}

func (h *Handler) handleFetch(ctx context.Context, correlationID uint32, apiVersion uint16, requestBody []byte) ([]byte, error) {
	// Parse the Fetch request to get the requested topics and partitions
	fetchRequest, err := h.parseFetchRequest(apiVersion, requestBody)
	if err != nil {
		return nil, fmt.Errorf("parse fetch request: %w", err)
	}

	// Basic long-polling to avoid client busy-looping when there's no data.
	var throttleTimeMs int32 = 0
	// Only long-poll when all referenced topics exist; unknown topics should not block
	allTopicsExist := func() bool {
		for _, topic := range fetchRequest.Topics {
			if !h.seaweedMQHandler.TopicExists(topic.Name) {
				return false
			}
		}
		return true
	}
	hasDataAvailable := func() bool {
		// Check if any requested partition has data available
		// Compare fetch offset with high water mark
		for _, topic := range fetchRequest.Topics {
			if !h.seaweedMQHandler.TopicExists(topic.Name) {
				continue
			}
			for _, partition := range topic.Partitions {
				hwm, err := h.seaweedMQHandler.GetLatestOffset(topic.Name, partition.PartitionID)
				if err != nil {
					continue
				}
				// Normalize fetch offset
				effectiveOffset := partition.FetchOffset
				if effectiveOffset == -2 { // earliest
					effectiveOffset = 0
				} else if effectiveOffset == -1 { // latest
					effectiveOffset = hwm
				}
				// If fetch offset < hwm, data is available
				if effectiveOffset < hwm {
					return true
				}
			}
		}
		return false
	}
	// Long-poll when client requests it via MaxWaitTime and there's no data
	// Even if MinBytes=0, we should honor MaxWaitTime to reduce polling overhead
	maxWaitMs := fetchRequest.MaxWaitTime

	// Long-poll if: (1) client wants to wait (maxWaitMs > 0), (2) no data available, (3) topics exist
	// NOTE: We long-poll even if MinBytes=0, since the client specified a wait time
	hasData := hasDataAvailable()
	topicsExist := allTopicsExist()
	shouldLongPoll := maxWaitMs > 0 && !hasData && topicsExist

	if shouldLongPoll {
		start := time.Now()
		// Use the client's requested wait time (already capped at 1s)
		maxPollTime := time.Duration(maxWaitMs) * time.Millisecond
		deadline := start.Add(maxPollTime)
	pollLoop:
		for time.Now().Before(deadline) {
			// Use context-aware sleep instead of blocking time.Sleep
			select {
			case <-ctx.Done():
				throttleTimeMs = int32(time.Since(start) / time.Millisecond)
				break pollLoop
			case <-time.After(10 * time.Millisecond):
				// Continue with polling
			}
			if hasDataAvailable() {
				// Data became available during polling - return immediately with NO throttle
				// Throttle time should only be used for quota enforcement, not for long-poll timing
				throttleTimeMs = 0
				break pollLoop
			}
		}
		// If we got here without breaking early, we hit the timeout
		// Long-poll timeout is NOT throttling - throttle time should only be used for quota/rate limiting
		// Do NOT set throttle time based on long-poll duration
		throttleTimeMs = 0
	}

	// Build the response
	response := make([]byte, 0, 1024)
	totalAppendedRecordBytes := 0

	// NOTE: Correlation ID is NOT included in the response body
	// The wire protocol layer (writeResponseWithTimeout) writes: [Size][CorrelationID][Body]
	// Kafka clients read the correlation ID separately from the 8-byte header, then read Size-4 bytes of body
	// If we include correlation ID here, clients will see it twice and fail with "4 extra bytes" errors

	// Fetch v1+ has throttle_time_ms at the beginning
	if apiVersion >= 1 {
		throttleBytes := make([]byte, 4)
		binary.BigEndian.PutUint32(throttleBytes, uint32(throttleTimeMs))
		response = append(response, throttleBytes...)
	}

	// Fetch v7+ has error_code and session_id
	if apiVersion >= 7 {
		response = append(response, 0, 0)       // error_code (2 bytes, 0 = no error)
		response = append(response, 0, 0, 0, 0) // session_id (4 bytes, 0 = no session)
	}

	// Check if this version uses flexible format (v12+)
	isFlexible := IsFlexibleVersion(1, apiVersion) // API key 1 = Fetch

	// Topics count - write the actual number of topics in the request
	// Kafka protocol: we MUST return all requested topics in the response (even with empty data)
	topicsCount := len(fetchRequest.Topics)
	if isFlexible {
		// Flexible versions use compact array format (count + 1)
		response = append(response, EncodeUvarint(uint32(topicsCount+1))...)
	} else {
		topicsCountBytes := make([]byte, 4)
		binary.BigEndian.PutUint32(topicsCountBytes, uint32(topicsCount))
		response = append(response, topicsCountBytes...)
	}

	// ====================================================================
	// PERSISTENT PARTITION READERS
	// Use per-connection persistent goroutines that maintain offset position
	// and stream forward, eliminating repeated lookups and reducing broker CPU
	// ====================================================================

	// Get connection context to access persistent partition readers
	connContext := h.getConnectionContextFromRequest(ctx)
	if connContext == nil {
		glog.Errorf("FETCH CORR=%d: Connection context not available - cannot use persistent readers",
			correlationID)
		return nil, fmt.Errorf("connection context not available")
	}

	glog.V(4).Infof("[%s] FETCH CORR=%d: Processing %d topics with %d total partitions",
		connContext.ConnectionID, correlationID, len(fetchRequest.Topics),
		func() int {
			count := 0
			for _, t := range fetchRequest.Topics {
				count += len(t.Partitions)
			}
			return count
		}())

	// Collect results from persistent readers
	// Dispatch all requests concurrently, then wait for all results in parallel
	// to avoid sequential timeout accumulation
	type pendingFetch struct {
		topicName   string
		partitionID int32
		resultChan  chan *partitionFetchResult
	}

	pending := make([]pendingFetch, 0)

	// Phase 1: Dispatch all fetch requests to partition readers (non-blocking)
	for _, topic := range fetchRequest.Topics {
		isSchematizedTopic := false
		if h.IsSchemaEnabled() {
			isSchematizedTopic = h.isSchematizedTopic(topic.Name)
		}

		for _, partition := range topic.Partitions {
			key := TopicPartitionKey{Topic: topic.Name, Partition: partition.PartitionID}

			// All topics (including system topics) use persistent readers for in-memory access
			// This enables instant notification and avoids ForceFlush dependencies

			// Get or create persistent reader for this partition
			reader := h.getOrCreatePartitionReader(ctx, connContext, key, partition.FetchOffset)
			if reader == nil {
				// Failed to create reader - add empty pending
				glog.Errorf("[%s] Failed to get/create partition reader for %s[%d]",
					connContext.ConnectionID, topic.Name, partition.PartitionID)
				nilChan := make(chan *partitionFetchResult, 1)
				nilChan <- &partitionFetchResult{errorCode: 3} // UNKNOWN_TOPIC_OR_PARTITION
				pending = append(pending, pendingFetch{
					topicName:   topic.Name,
					partitionID: partition.PartitionID,
					resultChan:  nilChan,
				})
				continue
			}

			// Signal reader to fetch (don't wait for result yet)
			resultChan := make(chan *partitionFetchResult, 1)
			fetchReq := &partitionFetchRequest{
				requestedOffset: partition.FetchOffset,
				maxBytes:        partition.MaxBytes,
				maxWaitMs:       maxWaitMs, // Pass MaxWaitTime from Kafka fetch request
				resultChan:      resultChan,
				isSchematized:   isSchematizedTopic,
				apiVersion:      apiVersion,
			}

			// Try to send request (increased timeout for CI environments with slow disk I/O)
			select {
			case reader.fetchChan <- fetchReq:
				// Request sent successfully, add to pending
				pending = append(pending, pendingFetch{
					topicName:   topic.Name,
					partitionID: partition.PartitionID,
					resultChan:  resultChan,
				})
			case <-time.After(200 * time.Millisecond):
				// Channel full, return empty result
				glog.Warningf("[%s] Reader channel full for %s[%d], returning empty",
					connContext.ConnectionID, topic.Name, partition.PartitionID)
				emptyChan := make(chan *partitionFetchResult, 1)
				emptyChan <- &partitionFetchResult{}
				pending = append(pending, pendingFetch{
					topicName:   topic.Name,
					partitionID: partition.PartitionID,
					resultChan:  emptyChan,
				})
			}
		}
	}

	// Phase 2: Wait for all results with adequate timeout for CI environments
	// We MUST return a result for every requested partition or Sarama will error
	results := make([]*partitionFetchResult, len(pending))
	// Use 95% of client's MaxWaitTime to ensure we return BEFORE client timeout
	// This maximizes data collection time while leaving a safety buffer for:
	// - Response serialization, network transmission, client processing
	// For 500ms client timeout: 475ms internal fetch, 25ms buffer
	// For 100ms client timeout: 95ms internal fetch, 5ms buffer
	effectiveDeadlineMs := time.Duration(maxWaitMs) * 95 / 100
	deadline := time.After(effectiveDeadlineMs * time.Millisecond)
	if maxWaitMs < 20 {
		// For very short timeouts (< 20ms), use full timeout to maximize data collection
		deadline = time.After(time.Duration(maxWaitMs) * time.Millisecond)
	}

	// Collect results one by one with shared deadline
	for i, pf := range pending {
		select {
		case result := <-pf.resultChan:
			results[i] = result
		case <-deadline:
			// Deadline expired, return empty for this and all remaining partitions
			for j := i; j < len(pending); j++ {
				results[j] = &partitionFetchResult{}
			}
			glog.V(3).Infof("[%s] Fetch deadline expired, returning empty for %d remaining partitions",
				connContext.ConnectionID, len(pending)-i)
			goto done
		case <-ctx.Done():
			// Context cancelled, return empty for remaining
			for j := i; j < len(pending); j++ {
				results[j] = &partitionFetchResult{}
			}
			goto done
		}
	}
done:

	// ====================================================================
	// BUILD RESPONSE FROM FETCHED DATA
	// Now assemble the response in the correct order using fetched results
	// ====================================================================

	// Verify we have results for all requested partitions
	// Sarama requires a response block for EVERY requested partition to avoid ErrIncompleteResponse
	expectedResultCount := 0
	for _, topic := range fetchRequest.Topics {
		expectedResultCount += len(topic.Partitions)
	}
	if len(results) != expectedResultCount {
		glog.Errorf("[%s] Result count mismatch: expected %d, got %d - this will cause ErrIncompleteResponse",
			connContext.ConnectionID, expectedResultCount, len(results))
		// Pad with empty results if needed (safety net - shouldn't happen with fixed code)
		for len(results) < expectedResultCount {
			results = append(results, &partitionFetchResult{})
		}
	}

	// Process each requested topic
	resultIdx := 0
	for _, topic := range fetchRequest.Topics {
		topicNameBytes := []byte(topic.Name)

		// Topic name length and name
		if isFlexible {
			// Flexible versions use compact string format (length + 1)
			response = append(response, EncodeUvarint(uint32(len(topicNameBytes)+1))...)
		} else {
			response = append(response, byte(len(topicNameBytes)>>8), byte(len(topicNameBytes)))
		}
		response = append(response, topicNameBytes...)

		// Partitions count for this topic
		partitionsCount := len(topic.Partitions)
		if isFlexible {
			// Flexible versions use compact array format (count + 1)
			response = append(response, EncodeUvarint(uint32(partitionsCount+1))...)
		} else {
			partitionsCountBytes := make([]byte, 4)
			binary.BigEndian.PutUint32(partitionsCountBytes, uint32(partitionsCount))
			response = append(response, partitionsCountBytes...)
		}

		// Process each requested partition (using pre-fetched results)
		for _, partition := range topic.Partitions {
			// Get the pre-fetched result for this partition
			result := results[resultIdx]
			resultIdx++

			// Partition ID
			partitionIDBytes := make([]byte, 4)
			binary.BigEndian.PutUint32(partitionIDBytes, uint32(partition.PartitionID))
			response = append(response, partitionIDBytes...)

			// Error code (2 bytes) - use the result's error code
			response = append(response, byte(result.errorCode>>8), byte(result.errorCode))

			// Use the pre-fetched high water mark from concurrent fetch
			highWaterMark := result.highWaterMark

			// High water mark (8 bytes)
			highWaterMarkBytes := make([]byte, 8)
			binary.BigEndian.PutUint64(highWaterMarkBytes, uint64(highWaterMark))
			response = append(response, highWaterMarkBytes...)

			// Fetch v4+ has last_stable_offset and log_start_offset
			if apiVersion >= 4 {
				// Last stable offset (8 bytes) - same as high water mark for non-transactional
				response = append(response, highWaterMarkBytes...)
				// Log start offset (8 bytes) - 0 for simplicity
				response = append(response, 0, 0, 0, 0, 0, 0, 0, 0)

				// Aborted transactions count (4 bytes) = 0
				response = append(response, 0, 0, 0, 0)
			}

			// Use the pre-fetched record batch
			recordBatch := result.recordBatch

			// Records size - flexible versions (v12+) use compact format: varint(size+1)
			if isFlexible {
				if len(recordBatch) == 0 {
					response = append(response, 0) // null records = 0 in compact format
				} else {
					response = append(response, EncodeUvarint(uint32(len(recordBatch)+1))...)
				}
			} else {
				// Non-flexible versions use int32(size)
				recordsSizeBytes := make([]byte, 4)
				binary.BigEndian.PutUint32(recordsSizeBytes, uint32(len(recordBatch)))
				response = append(response, recordsSizeBytes...)
			}

			// Records data
			response = append(response, recordBatch...)
			totalAppendedRecordBytes += len(recordBatch)

			// Tagged fields for flexible versions (v12+) after each partition
			if isFlexible {
				response = append(response, 0) // Empty tagged fields
			}
		}

		// Tagged fields for flexible versions (v12+) after each topic
		if isFlexible {
			response = append(response, 0) // Empty tagged fields
		}
	}

	// Tagged fields for flexible versions (v12+) at the end of response
	if isFlexible {
		response = append(response, 0) // Empty tagged fields
	}

	// Verify topics count hasn't been corrupted
	if !isFlexible {
		// Topics count position depends on API version:
		// v0: byte 0 (no throttle_time_ms, no error_code, no session_id)
		// v1-v6: byte 4 (after throttle_time_ms)
		// v7+: byte 10 (after throttle_time_ms, error_code, session_id)
		var topicsCountPos int
		if apiVersion == 0 {
			topicsCountPos = 0
		} else if apiVersion < 7 {
			topicsCountPos = 4
		} else {
			topicsCountPos = 10
		}

		if len(response) >= topicsCountPos+4 {
			actualTopicsCount := binary.BigEndian.Uint32(response[topicsCountPos : topicsCountPos+4])
			if actualTopicsCount != uint32(topicsCount) {
				glog.Errorf("FETCH CORR=%d v%d: Topics count CORRUPTED! Expected %d, found %d at response[%d:%d]=%02x %02x %02x %02x",
					correlationID, apiVersion, topicsCount, actualTopicsCount, topicsCountPos, topicsCountPos+4,
					response[topicsCountPos], response[topicsCountPos+1], response[topicsCountPos+2], response[topicsCountPos+3])
			}
		}
	}

	return response, nil
}

// FetchRequest represents a parsed Kafka Fetch request
type FetchRequest struct {
	ReplicaID      int32
	MaxWaitTime    int32
	MinBytes       int32
	MaxBytes       int32
	IsolationLevel int8
	Topics         []FetchTopic
}

type FetchTopic struct {
	Name       string
	Partitions []FetchPartition
}

type FetchPartition struct {
	PartitionID    int32
	FetchOffset    int64
	LogStartOffset int64
	MaxBytes       int32
}

// parseFetchRequest parses a Kafka Fetch request
func (h *Handler) parseFetchRequest(apiVersion uint16, requestBody []byte) (*FetchRequest, error) {
	if len(requestBody) < 12 {
		return nil, fmt.Errorf("fetch request too short: %d bytes", len(requestBody))
	}

	offset := 0
	request := &FetchRequest{}

	// Check if this version uses flexible format (v12+)
	isFlexible := IsFlexibleVersion(1, apiVersion) // API key 1 = Fetch

	// NOTE: client_id is already handled by HandleConn and stripped from requestBody
	// Request body starts directly with fetch-specific fields

	// Replica ID (4 bytes) - always fixed
	if offset+4 > len(requestBody) {
		return nil, fmt.Errorf("insufficient data for replica_id")
	}
	request.ReplicaID = int32(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
	offset += 4

	// Max wait time (4 bytes) - always fixed
	if offset+4 > len(requestBody) {
		return nil, fmt.Errorf("insufficient data for max_wait_time")
	}
	request.MaxWaitTime = int32(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
	offset += 4

	// Min bytes (4 bytes) - always fixed
	if offset+4 > len(requestBody) {
		return nil, fmt.Errorf("insufficient data for min_bytes")
	}
	request.MinBytes = int32(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
	offset += 4

	// Max bytes (4 bytes) - only in v3+, always fixed
	if apiVersion >= 3 {
		if offset+4 > len(requestBody) {
			return nil, fmt.Errorf("insufficient data for max_bytes")
		}
		request.MaxBytes = int32(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
		offset += 4
	}

	// Isolation level (1 byte) - only in v4+, always fixed
	if apiVersion >= 4 {
		if offset+1 > len(requestBody) {
			return nil, fmt.Errorf("insufficient data for isolation_level")
		}
		request.IsolationLevel = int8(requestBody[offset])
		offset += 1
	}

	// Session ID (4 bytes) and Session Epoch (4 bytes) - only in v7+, always fixed
	if apiVersion >= 7 {
		if offset+8 > len(requestBody) {
			return nil, fmt.Errorf("insufficient data for session_id and epoch")
		}
		offset += 8 // Skip session_id and session_epoch
	}

	// Topics count - flexible uses compact array, non-flexible uses INT32
	var topicsCount int
	if isFlexible {
		// Compact array: length+1 encoded as varint
		length, consumed, err := DecodeCompactArrayLength(requestBody[offset:])
		if err != nil {
			return nil, fmt.Errorf("decode topics compact array: %w", err)
		}
		topicsCount = int(length)
		offset += consumed
	} else {
		// Regular array: INT32 length
		if offset+4 > len(requestBody) {
			return nil, fmt.Errorf("insufficient data for topics count")
		}
		topicsCount = int(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
		offset += 4
	}

	// Parse topics
	request.Topics = make([]FetchTopic, topicsCount)
	for i := 0; i < topicsCount; i++ {
		// Topic name - flexible uses compact string, non-flexible uses STRING (INT16 length)
		var topicName string
		if isFlexible {
			// Compact string: length+1 encoded as varint
			name, consumed, err := DecodeFlexibleString(requestBody[offset:])
			if err != nil {
				return nil, fmt.Errorf("decode topic name compact string: %w", err)
			}
			topicName = name
			offset += consumed
		} else {
			// Regular string: INT16 length + bytes
			if offset+2 > len(requestBody) {
				return nil, fmt.Errorf("insufficient data for topic name length")
			}
			topicNameLength := int(binary.BigEndian.Uint16(requestBody[offset : offset+2]))
			offset += 2

			if offset+topicNameLength > len(requestBody) {
				return nil, fmt.Errorf("insufficient data for topic name")
			}
			topicName = string(requestBody[offset : offset+topicNameLength])
			offset += topicNameLength
		}
		request.Topics[i].Name = topicName

		// Partitions count - flexible uses compact array, non-flexible uses INT32
		var partitionsCount int
		if isFlexible {
			// Compact array: length+1 encoded as varint
			length, consumed, err := DecodeCompactArrayLength(requestBody[offset:])
			if err != nil {
				return nil, fmt.Errorf("decode partitions compact array: %w", err)
			}
			partitionsCount = int(length)
			offset += consumed
		} else {
			// Regular array: INT32 length
			if offset+4 > len(requestBody) {
				return nil, fmt.Errorf("insufficient data for partitions count")
			}
			partitionsCount = int(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
			offset += 4
		}

		// Parse partitions
		request.Topics[i].Partitions = make([]FetchPartition, partitionsCount)
		for j := 0; j < partitionsCount; j++ {
			// Partition ID (4 bytes) - always fixed
			if offset+4 > len(requestBody) {
				return nil, fmt.Errorf("insufficient data for partition ID")
			}
			request.Topics[i].Partitions[j].PartitionID = int32(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
			offset += 4

			// Current leader epoch (4 bytes) - only in v9+, always fixed
			if apiVersion >= 9 {
				if offset+4 > len(requestBody) {
					return nil, fmt.Errorf("insufficient data for current leader epoch")
				}
				offset += 4 // Skip current leader epoch
			}

			// Fetch offset (8 bytes) - always fixed
			if offset+8 > len(requestBody) {
				return nil, fmt.Errorf("insufficient data for fetch offset")
			}
			request.Topics[i].Partitions[j].FetchOffset = int64(binary.BigEndian.Uint64(requestBody[offset : offset+8]))
			offset += 8

			// Log start offset (8 bytes) - only in v5+, always fixed
			if apiVersion >= 5 {
				if offset+8 > len(requestBody) {
					return nil, fmt.Errorf("insufficient data for log start offset")
				}
				request.Topics[i].Partitions[j].LogStartOffset = int64(binary.BigEndian.Uint64(requestBody[offset : offset+8]))
				offset += 8
			}

			// Partition max bytes (4 bytes) - always fixed
			if offset+4 > len(requestBody) {
				return nil, fmt.Errorf("insufficient data for partition max bytes")
			}
			request.Topics[i].Partitions[j].MaxBytes = int32(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
			offset += 4

			// Tagged fields for partition (only in flexible versions v12+)
			if isFlexible {
				_, consumed, err := DecodeTaggedFields(requestBody[offset:])
				if err != nil {
					return nil, fmt.Errorf("decode partition tagged fields: %w", err)
				}
				offset += consumed
			}
		}

		// Tagged fields for topic (only in flexible versions v12+)
		if isFlexible {
			_, consumed, err := DecodeTaggedFields(requestBody[offset:])
			if err != nil {
				return nil, fmt.Errorf("decode topic tagged fields: %w", err)
			}
			offset += consumed
		}
	}

	// Forgotten topics data (only in v7+)
	if apiVersion >= 7 {
		// Skip forgotten topics array - we don't use incremental fetch yet
		var forgottenTopicsCount int
		if isFlexible {
			length, consumed, err := DecodeCompactArrayLength(requestBody[offset:])
			if err != nil {
				return nil, fmt.Errorf("decode forgotten topics compact array: %w", err)
			}
			forgottenTopicsCount = int(length)
			offset += consumed
		} else {
			if offset+4 > len(requestBody) {
				// End of request, no forgotten topics
				return request, nil
			}
			forgottenTopicsCount = int(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
			offset += 4
		}

		// Skip forgotten topics if present
		for i := 0; i < forgottenTopicsCount && offset < len(requestBody); i++ {
			// Skip topic name
			if isFlexible {
				_, consumed, err := DecodeFlexibleString(requestBody[offset:])
				if err != nil {
					break
				}
				offset += consumed
			} else {
				if offset+2 > len(requestBody) {
					break
				}
				nameLen := int(binary.BigEndian.Uint16(requestBody[offset : offset+2]))
				offset += 2 + nameLen
			}

			// Skip partitions array
			if isFlexible {
				length, consumed, err := DecodeCompactArrayLength(requestBody[offset:])
				if err != nil {
					break
				}
				offset += consumed
				// Skip partition IDs (4 bytes each)
				offset += int(length) * 4
			} else {
				if offset+4 > len(requestBody) {
					break
				}
				partCount := int(binary.BigEndian.Uint32(requestBody[offset : offset+4]))
				offset += 4 + partCount*4
			}

			// Skip tagged fields if flexible
			if isFlexible {
				_, consumed, err := DecodeTaggedFields(requestBody[offset:])
				if err != nil {
					break
				}
				offset += consumed
			}
		}
	}

	// Rack ID (only in v11+) - optional string
	if apiVersion >= 11 && offset < len(requestBody) {
		if isFlexible {
			_, consumed, err := DecodeFlexibleString(requestBody[offset:])
			if err == nil {
				offset += consumed
			}
		} else {
			if offset+2 <= len(requestBody) {
				rackIDLen := int(binary.BigEndian.Uint16(requestBody[offset : offset+2]))
				if rackIDLen >= 0 && offset+2+rackIDLen <= len(requestBody) {
					offset += 2 + rackIDLen
				}
			}
		}
	}

	// Top-level tagged fields (only in flexible versions v12+)
	if isFlexible && offset < len(requestBody) {
		_, consumed, err := DecodeTaggedFields(requestBody[offset:])
		if err != nil {
			// Don't fail on trailing tagged fields parsing
		} else {
			offset += consumed
		}
	}

	return request, nil
}

// constructRecordBatchFromSMQ creates a Kafka record batch from SeaweedMQ records
func (h *Handler) constructRecordBatchFromSMQ(topicName string, fetchOffset int64, smqRecords []integration.SMQRecord) []byte {
	if len(smqRecords) == 0 {
		return []byte{}
	}

	// Create record batch using the SMQ records
	batch := make([]byte, 0, 512)

	// Record batch header
	baseOffsetBytes := make([]byte, 8)
	binary.BigEndian.PutUint64(baseOffsetBytes, uint64(fetchOffset))
	batch = append(batch, baseOffsetBytes...) // base offset (8 bytes)

	// Calculate batch length (will be filled after we know the size)
	batchLengthPos := len(batch)
	batch = append(batch, 0, 0, 0, 0) // batch length placeholder (4 bytes)

	// Partition leader epoch (4 bytes) - use 0 (real Kafka uses 0, not -1)
	batch = append(batch, 0x00, 0x00, 0x00, 0x00)

	// Magic byte (1 byte) - v2 format
	batch = append(batch, 2)

	// CRC placeholder (4 bytes) - will be calculated later
	crcPos := len(batch)
	batch = append(batch, 0, 0, 0, 0)

	// Attributes (2 bytes) - no compression, etc.
	batch = append(batch, 0, 0)

	// Last offset delta (4 bytes)
	lastOffsetDelta := int32(len(smqRecords) - 1)
	lastOffsetDeltaBytes := make([]byte, 4)
	binary.BigEndian.PutUint32(lastOffsetDeltaBytes, uint32(lastOffsetDelta))
	batch = append(batch, lastOffsetDeltaBytes...)

	// Base timestamp (8 bytes) - convert from nanoseconds to milliseconds for Kafka compatibility
	baseTimestamp := smqRecords[0].GetTimestamp() / 1000000 // Convert nanoseconds to milliseconds
	baseTimestampBytes := make([]byte, 8)
	binary.BigEndian.PutUint64(baseTimestampBytes, uint64(baseTimestamp))
	batch = append(batch, baseTimestampBytes...)

	// Max timestamp (8 bytes) - convert from nanoseconds to milliseconds for Kafka compatibility
	maxTimestamp := baseTimestamp
	if len(smqRecords) > 1 {
		maxTimestamp = smqRecords[len(smqRecords)-1].GetTimestamp() / 1000000 // Convert nanoseconds to milliseconds
	}
	maxTimestampBytes := make([]byte, 8)
	binary.BigEndian.PutUint64(maxTimestampBytes, uint64(maxTimestamp))
	batch = append(batch, maxTimestampBytes...)

	// Producer ID (8 bytes) - use -1 for no producer ID
	batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF)

	// Producer epoch (2 bytes) - use -1 for no producer epoch
	batch = append(batch, 0xFF, 0xFF)

	// Base sequence (4 bytes) - use -1 for no base sequence
	batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF)

	// Records count (4 bytes)
	recordCountBytes := make([]byte, 4)
	binary.BigEndian.PutUint32(recordCountBytes, uint32(len(smqRecords)))
	batch = append(batch, recordCountBytes...)

	// Add individual records from SMQ records
	for i, smqRecord := range smqRecords {
		// Build individual record
		recordBytes := make([]byte, 0, 128)

		// Record attributes (1 byte)
		recordBytes = append(recordBytes, 0)

		// Timestamp delta (varint) - calculate from base timestamp (both in milliseconds)
		recordTimestampMs := smqRecord.GetTimestamp() / 1000000 // Convert nanoseconds to milliseconds
		timestampDelta := recordTimestampMs - baseTimestamp     // Both in milliseconds now
		recordBytes = append(recordBytes, encodeVarint(timestampDelta)...)

		// Offset delta (varint)
		offsetDelta := int64(i)
		recordBytes = append(recordBytes, encodeVarint(offsetDelta)...)

		// Key length and key (varint + data) - decode RecordValue to get original Kafka message
		key := h.decodeRecordValueToKafkaMessage(topicName, smqRecord.GetKey())
		if key == nil {
			recordBytes = append(recordBytes, encodeVarint(-1)...) // null key
		} else {
			recordBytes = append(recordBytes, encodeVarint(int64(len(key)))...)
			recordBytes = append(recordBytes, key...)
		}

		// Value length and value (varint + data) - decode RecordValue to get original Kafka message
		value := h.decodeRecordValueToKafkaMessage(topicName, smqRecord.GetValue())

		if value == nil {
			recordBytes = append(recordBytes, encodeVarint(-1)...) // null value
		} else {
			recordBytes = append(recordBytes, encodeVarint(int64(len(value)))...)
			recordBytes = append(recordBytes, value...)
		}

		// Headers count (varint) - 0 headers
		recordBytes = append(recordBytes, encodeVarint(0)...)

		// Prepend record length (varint)
		recordLength := int64(len(recordBytes))
		batch = append(batch, encodeVarint(recordLength)...)
		batch = append(batch, recordBytes...)
	}

	// Fill in the batch length
	batchLength := uint32(len(batch) - batchLengthPos - 4)
	binary.BigEndian.PutUint32(batch[batchLengthPos:batchLengthPos+4], batchLength)

	// Calculate CRC32 for the batch
	// Kafka CRC calculation covers: partition leader epoch + magic + attributes + ... (everything after batch length)
	// Skip: BaseOffset(8) + BatchLength(4) = 12 bytes
	crcData := batch[crcPos+4:] // CRC covers ONLY from attributes (byte 21) onwards // Skip CRC field itself, include rest
	crc := crc32.Checksum(crcData, crc32.MakeTable(crc32.Castagnoli))
	binary.BigEndian.PutUint32(batch[crcPos:crcPos+4], crc)

	return batch
}

// encodeVarint encodes a signed integer using Kafka's varint encoding
func encodeVarint(value int64) []byte {
	// Kafka uses zigzag encoding for signed integers
	zigzag := uint64((value << 1) ^ (value >> 63))

	var buf []byte
	for zigzag >= 0x80 {
		buf = append(buf, byte(zigzag)|0x80)
		zigzag >>= 7
	}
	buf = append(buf, byte(zigzag))
	return buf
}

// SchematizedRecord holds both key and value for schematized messages
type SchematizedRecord struct {
	Key   []byte
	Value []byte
}

// createEmptyRecordBatch creates an empty Kafka record batch using the new parser
func (h *Handler) createEmptyRecordBatch(baseOffset int64) []byte {
	// Use the new record batch creation function with no compression
	emptyRecords := []byte{}
	batch, err := CreateRecordBatch(baseOffset, emptyRecords, compression.None)
	if err != nil {
		// Fallback to manual creation if there's an error
		return h.createEmptyRecordBatchManual(baseOffset)
	}
	return batch
}

// createEmptyRecordBatchManual creates an empty Kafka record batch manually (fallback)
func (h *Handler) createEmptyRecordBatchManual(baseOffset int64) []byte {
	// Create a minimal empty record batch
	batch := make([]byte, 0, 61) // Standard record batch header size

	// Base offset (8 bytes)
	baseOffsetBytes := make([]byte, 8)
	binary.BigEndian.PutUint64(baseOffsetBytes, uint64(baseOffset))
	batch = append(batch, baseOffsetBytes...)

	// Batch length (4 bytes) - will be filled at the end
	lengthPlaceholder := len(batch)
	batch = append(batch, 0, 0, 0, 0)

	// Partition leader epoch (4 bytes) - 0 for simplicity
	batch = append(batch, 0, 0, 0, 0)

	// Magic byte (1 byte) - version 2
	batch = append(batch, 2)

	// CRC32 (4 bytes) - placeholder, should be calculated
	batch = append(batch, 0, 0, 0, 0)

	// Attributes (2 bytes) - no compression, no transactional
	batch = append(batch, 0, 0)

	// Last offset delta (4 bytes) - 0 for empty batch
	batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF)

	// First timestamp (8 bytes) - current time
	timestamp := time.Now().UnixMilli()
	timestampBytes := make([]byte, 8)
	binary.BigEndian.PutUint64(timestampBytes, uint64(timestamp))
	batch = append(batch, timestampBytes...)

	// Max timestamp (8 bytes) - same as first for empty batch
	batch = append(batch, timestampBytes...)

	// Producer ID (8 bytes) - -1 for non-transactional
	batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF)

	// Producer Epoch (2 bytes) - -1 for non-transactional
	batch = append(batch, 0xFF, 0xFF)

	// Base Sequence (4 bytes) - -1 for non-transactional
	batch = append(batch, 0xFF, 0xFF, 0xFF, 0xFF)

	// Record count (4 bytes) - 0 for empty batch
	batch = append(batch, 0, 0, 0, 0)

	// Fill in the batch length
	batchLength := len(batch) - 12 // Exclude base offset and length field itself
	binary.BigEndian.PutUint32(batch[lengthPlaceholder:lengthPlaceholder+4], uint32(batchLength))

	return batch
}

// isSchematizedTopic checks if a topic uses schema management
func (h *Handler) isSchematizedTopic(topicName string) bool {
	// System topics (_schemas, __consumer_offsets, etc.) should NEVER use schema encoding
	// They have their own internal formats and should be passed through as-is
	if h.isSystemTopic(topicName) {
		return false
	}

	if !h.IsSchemaEnabled() {
		return false
	}

	// Check multiple indicators for schematized topics:

	// Check Confluent Schema Registry naming conventions
	return h.matchesSchemaRegistryConvention(topicName)
}

// matchesSchemaRegistryConvention checks Confluent Schema Registry naming patterns
func (h *Handler) matchesSchemaRegistryConvention(topicName string) bool {
	// Common Schema Registry subject patterns:
	// - topicName-value (for message values)
	// - topicName-key (for message keys)
	// - topicName (direct topic name as subject)

	if len(topicName) > 6 && topicName[len(topicName)-6:] == "-value" {
		return true
	}
	if len(topicName) > 4 && topicName[len(topicName)-4:] == "-key" {
		return true
	}

	// Check if the topic has registered schema subjects in Schema Registry
	// Use standard Kafka naming convention: <topic>-value and <topic>-key
	if h.schemaManager != nil {
		// Check with -value suffix (standard pattern for value schemas)
		latestSchemaValue, err := h.schemaManager.GetLatestSchema(topicName + "-value")
		if err == nil {
			// Since we retrieved schema from registry, ensure topic config is updated
			h.ensureTopicSchemaFromLatestSchema(topicName, latestSchemaValue)
			return true
		}

		// Check with -key suffix (for key schemas)
		latestSchemaKey, err := h.schemaManager.GetLatestSchema(topicName + "-key")
		if err == nil {
			// Since we retrieved key schema from registry, ensure topic config is updated
			h.ensureTopicKeySchemaFromLatestSchema(topicName, latestSchemaKey)
			return true
		}
	}

	return false
}

// getSchemaMetadataForTopic retrieves schema metadata for a topic
func (h *Handler) getSchemaMetadataForTopic(topicName string) (map[string]string, error) {
	if !h.IsSchemaEnabled() {
		return nil, fmt.Errorf("schema management not enabled")
	}

	// Try multiple approaches to get schema metadata from Schema Registry

	// 1. Try to get schema from registry using topic name as subject
	metadata, err := h.getSchemaMetadataFromRegistry(topicName)
	if err == nil {
		return metadata, nil
	}

	// 2. Try with -value suffix (common pattern)
	metadata, err = h.getSchemaMetadataFromRegistry(topicName + "-value")
	if err == nil {
		return metadata, nil
	}

	// 3. Try with -key suffix
	metadata, err = h.getSchemaMetadataFromRegistry(topicName + "-key")
	if err == nil {
		return metadata, nil
	}

	return nil, fmt.Errorf("no schema found in registry for topic %s (tried %s, %s-value, %s-key)", topicName, topicName, topicName, topicName)
}

// getSchemaMetadataFromRegistry retrieves schema metadata from Schema Registry
func (h *Handler) getSchemaMetadataFromRegistry(subject string) (map[string]string, error) {
	if h.schemaManager == nil {
		return nil, fmt.Errorf("schema manager not available")
	}

	// Get latest schema for the subject
	cachedSchema, err := h.schemaManager.GetLatestSchema(subject)
	if err != nil {
		return nil, fmt.Errorf("failed to get schema for subject %s: %w", subject, err)
	}

	// Since we retrieved schema from registry, ensure topic config is updated
	// Extract topic name from subject (remove -key or -value suffix if present)
	topicName := h.extractTopicFromSubject(subject)
	if topicName != "" {
		h.ensureTopicSchemaFromLatestSchema(topicName, cachedSchema)
	}

	// Build metadata map
	// Detect format from schema content
	// Simple format detection - assume Avro for now
	format := schema.FormatAvro

	metadata := map[string]string{
		"schema_id":      fmt.Sprintf("%d", cachedSchema.LatestID),
		"schema_format":  format.String(),
		"schema_subject": subject,
		"schema_version": fmt.Sprintf("%d", cachedSchema.Version),
		"schema_content": cachedSchema.Schema,
	}

	return metadata, nil
}

// ensureTopicSchemaFromLatestSchema ensures topic configuration is updated when latest schema is retrieved
func (h *Handler) ensureTopicSchemaFromLatestSchema(topicName string, latestSchema *schema.CachedSubject) {
	if latestSchema == nil {
		return
	}

	// Convert CachedSubject to CachedSchema format for reuse
	// Note: CachedSubject has different field structure than expected
	cachedSchema := &schema.CachedSchema{
		ID:       latestSchema.LatestID,
		Schema:   latestSchema.Schema,
		Subject:  latestSchema.Subject,
		Version:  latestSchema.Version,
		Format:   schema.FormatAvro, // Default to Avro, could be improved with format detection
		CachedAt: latestSchema.CachedAt,
	}

	// Use existing function to handle the schema update
	h.ensureTopicSchemaFromRegistryCache(topicName, cachedSchema)
}

// extractTopicFromSubject extracts the topic name from a schema registry subject
func (h *Handler) extractTopicFromSubject(subject string) string {
	// Remove common suffixes used in schema registry
	if strings.HasSuffix(subject, "-value") {
		return strings.TrimSuffix(subject, "-value")
	}
	if strings.HasSuffix(subject, "-key") {
		return strings.TrimSuffix(subject, "-key")
	}
	// If no suffix, assume subject name is the topic name
	return subject
}

// ensureTopicKeySchemaFromLatestSchema ensures topic configuration is updated when key schema is retrieved
func (h *Handler) ensureTopicKeySchemaFromLatestSchema(topicName string, latestSchema *schema.CachedSubject) {
	if latestSchema == nil {
		return
	}

	// Convert CachedSubject to CachedSchema format for reuse
	// Note: CachedSubject has different field structure than expected
	cachedSchema := &schema.CachedSchema{
		ID:       latestSchema.LatestID,
		Schema:   latestSchema.Schema,
		Subject:  latestSchema.Subject,
		Version:  latestSchema.Version,
		Format:   schema.FormatAvro, // Default to Avro, could be improved with format detection
		CachedAt: latestSchema.CachedAt,
	}

	// Use existing function to handle the key schema update
	h.ensureTopicKeySchemaFromRegistryCache(topicName, cachedSchema)
}

// decodeRecordValueToKafkaMessage decodes a RecordValue back to the original Kafka message bytes
func (h *Handler) decodeRecordValueToKafkaMessage(topicName string, recordValueBytes []byte) []byte {
	if recordValueBytes == nil {
		return nil
	}

	// For system topics like _schemas, _consumer_offsets, etc.,
	// return the raw bytes as-is. These topics store Kafka's internal format (Avro, etc.)
	// and should NOT be processed as RecordValue protobuf messages.
	if strings.HasPrefix(topicName, "_") {
		return recordValueBytes
	}

	// CRITICAL: If schema management is not enabled, we should NEVER try to parse as RecordValue
	// All messages are stored as raw bytes when schema management is disabled
	// Attempting to parse them as RecordValue will cause corruption due to protobuf's lenient parsing
	if !h.IsSchemaEnabled() {
		return recordValueBytes
	}

	// Try to unmarshal as RecordValue
	recordValue := &schema_pb.RecordValue{}
	if err := proto.Unmarshal(recordValueBytes, recordValue); err != nil {
		// Not a RecordValue format - this is normal for Avro/JSON/raw Kafka messages
		// Return raw bytes as-is (Kafka consumers expect this)
		return recordValueBytes
	}

	// Validate that the unmarshaled RecordValue is actually a valid RecordValue
	// Protobuf unmarshal is lenient and can succeed with garbage data for random bytes
	// We need to check if this looks like a real RecordValue or just random bytes
	if !h.isValidRecordValue(recordValue, recordValueBytes) {
		// Not a valid RecordValue - return raw bytes as-is
		return recordValueBytes
	}

	// If schema management is enabled, re-encode the RecordValue to Confluent format
	if h.IsSchemaEnabled() {
		if encodedMsg, err := h.encodeRecordValueToConfluentFormat(topicName, recordValue); err == nil {
			return encodedMsg
		} else {
		}
	}

	// Fallback: convert RecordValue to JSON
	return h.recordValueToJSON(recordValue)
}

// isValidRecordValue checks if a RecordValue looks like a real RecordValue or garbage from random bytes
// This performs a roundtrip test: marshal the RecordValue and check if it produces similar output
func (h *Handler) isValidRecordValue(recordValue *schema_pb.RecordValue, originalBytes []byte) bool {
	// Empty or nil Fields means not a valid RecordValue
	if recordValue == nil || recordValue.Fields == nil || len(recordValue.Fields) == 0 {
		return false
	}

	// Check if field names are valid UTF-8 strings (not binary garbage)
	// Real RecordValue messages have proper field names like "name", "age", etc.
	// Random bytes parsed as protobuf often create non-UTF8 or very short field names
	for fieldName, fieldValue := range recordValue.Fields {
		// Field name should be valid UTF-8
		if !utf8.ValidString(fieldName) {
			return false
		}

		// Field name should have reasonable length (at least 1 char, at most 1000)
		if len(fieldName) == 0 || len(fieldName) > 1000 {
			return false
		}

		// Field value should not be nil
		if fieldValue == nil || fieldValue.Kind == nil {
			return false
		}
	}

	// Roundtrip check: If this is a real RecordValue, marshaling it back should produce
	// similar-sized output. Random bytes that accidentally parse as protobuf will typically
	// produce very different output when marshaled back.
	remarshaled, err := proto.Marshal(recordValue)
	if err != nil {
		return false
	}

	// Check if the sizes are reasonably similar (within 50% tolerance)
	// Real RecordValue will have similar size, random bytes will be very different
	originalSize := len(originalBytes)
	remarshaledSize := len(remarshaled)
	if originalSize == 0 {
		return false
	}

	// Calculate size ratio - should be close to 1.0 for real RecordValue
	ratio := float64(remarshaledSize) / float64(originalSize)
	if ratio < 0.5 || ratio > 2.0 {
		// Size differs too much - this is likely random bytes parsed as protobuf
		return false
	}

	return true
}

// encodeRecordValueToConfluentFormat re-encodes a RecordValue back to Confluent format
func (h *Handler) encodeRecordValueToConfluentFormat(topicName string, recordValue *schema_pb.RecordValue) ([]byte, error) {
	if recordValue == nil {
		return nil, fmt.Errorf("RecordValue is nil")
	}

	// Get schema configuration from topic config
	schemaConfig, err := h.getTopicSchemaConfig(topicName)
	if err != nil {
		return nil, fmt.Errorf("failed to get topic schema config: %w", err)
	}

	// Use schema manager to encode RecordValue back to original format
	encodedBytes, err := h.schemaManager.EncodeMessage(recordValue, schemaConfig.ValueSchemaID, schemaConfig.ValueSchemaFormat)
	if err != nil {
		return nil, fmt.Errorf("failed to encode RecordValue: %w", err)
	}

	return encodedBytes, nil
}

// getTopicSchemaConfig retrieves schema configuration for a topic
func (h *Handler) getTopicSchemaConfig(topicName string) (*TopicSchemaConfig, error) {
	h.topicSchemaConfigMu.RLock()
	defer h.topicSchemaConfigMu.RUnlock()

	if h.topicSchemaConfigs == nil {
		return nil, fmt.Errorf("no schema configuration available for topic: %s", topicName)
	}

	config, exists := h.topicSchemaConfigs[topicName]
	if !exists {
		return nil, fmt.Errorf("no schema configuration found for topic: %s", topicName)
	}

	return config, nil
}

// recordValueToJSON converts a RecordValue to JSON bytes (fallback)
func (h *Handler) recordValueToJSON(recordValue *schema_pb.RecordValue) []byte {
	if recordValue == nil || recordValue.Fields == nil {
		return []byte("{}")
	}

	// Simple JSON conversion - in a real implementation, this would be more sophisticated
	jsonStr := "{"
	first := true
	for fieldName, fieldValue := range recordValue.Fields {
		if !first {
			jsonStr += ","
		}
		first = false

		jsonStr += fmt.Sprintf(`"%s":`, fieldName)

		switch v := fieldValue.Kind.(type) {
		case *schema_pb.Value_StringValue:
			jsonStr += fmt.Sprintf(`"%s"`, v.StringValue)
		case *schema_pb.Value_BytesValue:
			jsonStr += fmt.Sprintf(`"%s"`, string(v.BytesValue))
		case *schema_pb.Value_Int32Value:
			jsonStr += fmt.Sprintf(`%d`, v.Int32Value)
		case *schema_pb.Value_Int64Value:
			jsonStr += fmt.Sprintf(`%d`, v.Int64Value)
		case *schema_pb.Value_BoolValue:
			jsonStr += fmt.Sprintf(`%t`, v.BoolValue)
		default:
			jsonStr += `null`
		}
	}
	jsonStr += "}"

	return []byte(jsonStr)
}