1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
package s3api
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"testing"
"github.com/seaweedfs/seaweedfs/weed/pb/filer_pb"
)
// TestSSES3MultipartChunkViewDecryption tests that multipart SSE-S3 objects use per-chunk IVs
func TestSSES3MultipartChunkViewDecryption(t *testing.T) {
// Generate test key and base IV
key := make([]byte, 32)
rand.Read(key)
baseIV := make([]byte, 16)
rand.Read(baseIV)
// Create test plaintext
plaintext := []byte("This is test data for SSE-S3 multipart encryption testing")
// Simulate multipart upload with 2 parts at different offsets
testCases := []struct {
name string
partNumber int
partOffset int64
data []byte
}{
{"Part 1", 1, 0, plaintext[:30]},
{"Part 2", 2, 5 * 1024 * 1024, plaintext[30:]}, // 5MB offset
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
// Calculate IV with offset (simulating upload encryption)
adjustedIV, _ := calculateIVWithOffset(baseIV, tc.partOffset)
// Encrypt the part data
block, err := aes.NewCipher(key)
if err != nil {
t.Fatalf("Failed to create cipher: %v", err)
}
ciphertext := make([]byte, len(tc.data))
stream := cipher.NewCTR(block, adjustedIV)
stream.XORKeyStream(ciphertext, tc.data)
// SSE-S3 stores the offset-adjusted IV directly in chunk metadata
// (unlike SSE-C which stores base IV + PartOffset)
chunkIV := adjustedIV
// Verify the IV is offset-adjusted for non-zero offsets
if tc.partOffset == 0 {
if !bytes.Equal(chunkIV, baseIV) {
t.Error("IV should equal base IV when offset is 0")
}
} else {
if bytes.Equal(chunkIV, baseIV) {
t.Error("Chunk IV should be offset-adjusted, not base IV")
}
}
// Verify decryption works with the chunk's IV
decryptedData := make([]byte, len(ciphertext))
decryptBlock, err := aes.NewCipher(key)
if err != nil {
t.Fatalf("Failed to create decrypt cipher: %v", err)
}
decryptStream := cipher.NewCTR(decryptBlock, chunkIV)
decryptStream.XORKeyStream(decryptedData, ciphertext)
if !bytes.Equal(decryptedData, tc.data) {
t.Errorf("Decryption failed: expected %q, got %q", tc.data, decryptedData)
}
})
}
}
// TestSSES3SinglePartChunkViewDecryption tests single-part SSE-S3 objects use object-level IV
func TestSSES3SinglePartChunkViewDecryption(t *testing.T) {
// Generate test key and IV
key := make([]byte, 32)
rand.Read(key)
iv := make([]byte, 16)
rand.Read(iv)
// Create test plaintext
plaintext := []byte("This is test data for SSE-S3 single-part encryption testing")
// Encrypt the data
block, err := aes.NewCipher(key)
if err != nil {
t.Fatalf("Failed to create cipher: %v", err)
}
ciphertext := make([]byte, len(plaintext))
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(ciphertext, plaintext)
// Create a mock file chunk WITHOUT per-chunk metadata (single-part path)
fileChunk := &filer_pb.FileChunk{
FileId: "test-file-id",
Offset: 0,
Size: uint64(len(ciphertext)),
SseType: filer_pb.SSEType_SSE_S3,
SseMetadata: nil, // No per-chunk metadata for single-part
}
// Verify the chunk does NOT have per-chunk metadata
if len(fileChunk.GetSseMetadata()) > 0 {
t.Error("Single-part chunk should not have per-chunk metadata")
}
// For single-part, the object-level IV is used
objectLevelIV := iv
// Verify decryption works with the object-level IV
decryptedData := make([]byte, len(ciphertext))
decryptBlock, _ := aes.NewCipher(key)
decryptStream := cipher.NewCTR(decryptBlock, objectLevelIV)
decryptStream.XORKeyStream(decryptedData, ciphertext)
if !bytes.Equal(decryptedData, plaintext) {
t.Errorf("Decryption failed: expected %q, got %q", plaintext, decryptedData)
}
}
// TestSSES3IVOffsetCalculation verifies IV offset calculation for multipart uploads
func TestSSES3IVOffsetCalculation(t *testing.T) {
baseIV := make([]byte, 16)
rand.Read(baseIV)
testCases := []struct {
name string
partNumber int
partSize int64
offset int64
}{
{"Part 1", 1, 5 * 1024 * 1024, 0},
{"Part 2", 2, 5 * 1024 * 1024, 5 * 1024 * 1024},
{"Part 3", 3, 5 * 1024 * 1024, 10 * 1024 * 1024},
{"Part 10", 10, 5 * 1024 * 1024, 45 * 1024 * 1024},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
// Calculate IV with offset
adjustedIV, skip := calculateIVWithOffset(baseIV, tc.offset)
// Verify IV is different from base (except for offset 0)
if tc.offset == 0 {
if !bytes.Equal(adjustedIV, baseIV) {
t.Error("IV should equal base IV when offset is 0")
}
if skip != 0 {
t.Errorf("Skip should be 0 when offset is 0, got %d", skip)
}
} else {
if bytes.Equal(adjustedIV, baseIV) {
t.Error("IV should be different from base IV when offset > 0")
}
}
// Verify skip is calculated correctly
expectedSkip := int(tc.offset % 16)
if skip != expectedSkip {
t.Errorf("Skip mismatch: expected %d, got %d", expectedSkip, skip)
}
// Verify IV adjustment is deterministic
adjustedIV2, skip2 := calculateIVWithOffset(baseIV, tc.offset)
if !bytes.Equal(adjustedIV, adjustedIV2) || skip != skip2 {
t.Error("IV calculation is not deterministic")
}
})
}
}
// TestSSES3ChunkMetadataDetection tests detection of per-chunk vs object-level metadata
func TestSSES3ChunkMetadataDetection(t *testing.T) {
// Test data for multipart chunk
mockMetadata := []byte("mock-serialized-metadata")
testCases := []struct {
name string
chunk *filer_pb.FileChunk
expectedMultipart bool
}{
{
name: "Multipart chunk with metadata",
chunk: &filer_pb.FileChunk{
SseType: filer_pb.SSEType_SSE_S3,
SseMetadata: mockMetadata,
},
expectedMultipart: true,
},
{
name: "Single-part chunk without metadata",
chunk: &filer_pb.FileChunk{
SseType: filer_pb.SSEType_SSE_S3,
SseMetadata: nil,
},
expectedMultipart: false,
},
{
name: "Non-SSE-S3 chunk",
chunk: &filer_pb.FileChunk{
SseType: filer_pb.SSEType_NONE,
SseMetadata: nil,
},
expectedMultipart: false,
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
hasPerChunkMetadata := tc.chunk.GetSseType() == filer_pb.SSEType_SSE_S3 && len(tc.chunk.GetSseMetadata()) > 0
if hasPerChunkMetadata != tc.expectedMultipart {
t.Errorf("Expected multipart=%v, got hasPerChunkMetadata=%v", tc.expectedMultipart, hasPerChunkMetadata)
}
})
}
}
// TestSSES3EncryptionConsistency verifies encryption/decryption roundtrip
func TestSSES3EncryptionConsistency(t *testing.T) {
plaintext := []byte("Test data for SSE-S3 encryption consistency verification")
key := make([]byte, 32)
rand.Read(key)
iv := make([]byte, 16)
rand.Read(iv)
// Encrypt
block, err := aes.NewCipher(key)
if err != nil {
t.Fatalf("Failed to create cipher: %v", err)
}
ciphertext := make([]byte, len(plaintext))
encryptStream := cipher.NewCTR(block, iv)
encryptStream.XORKeyStream(ciphertext, plaintext)
// Decrypt
decrypted := make([]byte, len(ciphertext))
decryptBlock, _ := aes.NewCipher(key)
decryptStream := cipher.NewCTR(decryptBlock, iv)
decryptStream.XORKeyStream(decrypted, ciphertext)
// Verify
if !bytes.Equal(decrypted, plaintext) {
t.Errorf("Decryption mismatch: expected %q, got %q", plaintext, decrypted)
}
// Verify idempotency - decrypt again should give garbage
decrypted2 := make([]byte, len(ciphertext))
decryptStream2 := cipher.NewCTR(decryptBlock, iv)
decryptStream2.XORKeyStream(decrypted2, ciphertext)
if !bytes.Equal(decrypted2, plaintext) {
t.Error("Second decryption should also work with fresh stream")
}
}
|