1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
// Package placement provides consolidated EC shard placement logic used by
// both shell commands and worker tasks.
//
// This package encapsulates the algorithms for:
// - Selecting destination nodes/disks for EC shards
// - Ensuring proper spread across racks, servers, and disks
// - Balancing shards across the cluster
package placement
import (
"fmt"
"sort"
)
// DiskCandidate represents a disk that can receive EC shards
type DiskCandidate struct {
NodeID string
DiskID uint32
DataCenter string
Rack string
// Capacity information
VolumeCount int64
MaxVolumeCount int64
ShardCount int // Current number of EC shards on this disk
FreeSlots int // Available slots for new shards
// Load information
LoadCount int // Number of active tasks on this disk
}
// NodeCandidate represents a server node that can receive EC shards
type NodeCandidate struct {
NodeID string
DataCenter string
Rack string
FreeSlots int
ShardCount int // Total shards across all disks
Disks []*DiskCandidate // All disks on this node
}
// PlacementRequest configures EC shard placement behavior
type PlacementRequest struct {
// ShardsNeeded is the total number of shards to place
ShardsNeeded int
// MaxShardsPerServer limits how many shards can be placed on a single server
// 0 means no limit (but prefer spreading when possible)
MaxShardsPerServer int
// MaxShardsPerRack limits how many shards can be placed in a single rack
// 0 means no limit
MaxShardsPerRack int
// MaxTaskLoad is the maximum task load count for a disk to be considered
MaxTaskLoad int
// PreferDifferentServers when true, spreads shards across different servers
// before using multiple disks on the same server
PreferDifferentServers bool
// PreferDifferentRacks when true, spreads shards across different racks
// before using multiple servers in the same rack
PreferDifferentRacks bool
}
// DefaultPlacementRequest returns the default placement configuration
func DefaultPlacementRequest() PlacementRequest {
return PlacementRequest{
ShardsNeeded: 14,
MaxShardsPerServer: 0,
MaxShardsPerRack: 0,
MaxTaskLoad: 5,
PreferDifferentServers: true,
PreferDifferentRacks: true,
}
}
// PlacementResult contains the selected destinations for EC shards
type PlacementResult struct {
SelectedDisks []*DiskCandidate
// Statistics
ServersUsed int
RacksUsed int
DCsUsed int
// Distribution maps
ShardsPerServer map[string]int
ShardsPerRack map[string]int
ShardsPerDC map[string]int
}
// SelectDestinations selects the best disks for EC shard placement.
// This is the main entry point for EC placement logic.
//
// The algorithm works in multiple passes:
// 1. First pass: Select one disk from each rack (maximize rack diversity)
// 2. Second pass: Select one disk from each unused server in used racks (maximize server diversity)
// 3. Third pass: Select additional disks from servers already used (maximize disk diversity)
func SelectDestinations(disks []*DiskCandidate, config PlacementRequest) (*PlacementResult, error) {
if len(disks) == 0 {
return nil, fmt.Errorf("no disk candidates provided")
}
if config.ShardsNeeded <= 0 {
return nil, fmt.Errorf("shardsNeeded must be positive, got %d", config.ShardsNeeded)
}
// Filter suitable disks
suitable := filterSuitableDisks(disks, config)
if len(suitable) == 0 {
return nil, fmt.Errorf("no suitable disks found after filtering")
}
// Build indexes for efficient lookup
rackToDisks := groupDisksByRack(suitable)
result := &PlacementResult{
SelectedDisks: make([]*DiskCandidate, 0, config.ShardsNeeded),
ShardsPerServer: make(map[string]int),
ShardsPerRack: make(map[string]int),
ShardsPerDC: make(map[string]int),
}
usedDisks := make(map[string]bool) // "nodeID:diskID" -> bool
usedServers := make(map[string]bool) // nodeID -> bool
usedRacks := make(map[string]bool) // "dc:rack" -> bool
// Pass 1: Select one disk from each rack (maximize rack diversity)
if config.PreferDifferentRacks {
// Sort racks by number of available servers (descending) to prioritize racks with more options
sortedRacks := sortRacksByServerCount(rackToDisks)
for _, rackKey := range sortedRacks {
if len(result.SelectedDisks) >= config.ShardsNeeded {
break
}
rackDisks := rackToDisks[rackKey]
// Select best disk from this rack, preferring a new server
disk := selectBestDiskFromRack(rackDisks, usedServers, usedDisks, config)
if disk != nil {
addDiskToResult(result, disk, usedDisks, usedServers, usedRacks)
}
}
}
// Pass 2: Select disks from unused servers in already-used racks
if config.PreferDifferentServers && len(result.SelectedDisks) < config.ShardsNeeded {
for _, rackKey := range getSortedRackKeys(rackToDisks) {
if len(result.SelectedDisks) >= config.ShardsNeeded {
break
}
rackDisks := rackToDisks[rackKey]
for _, disk := range sortDisksByScore(rackDisks) {
if len(result.SelectedDisks) >= config.ShardsNeeded {
break
}
diskKey := getDiskKey(disk)
if usedDisks[diskKey] {
continue
}
// Skip if server already used (we want different servers in this pass)
if usedServers[disk.NodeID] {
continue
}
// Check server limit
if config.MaxShardsPerServer > 0 && result.ShardsPerServer[disk.NodeID] >= config.MaxShardsPerServer {
continue
}
// Check rack limit
if config.MaxShardsPerRack > 0 && result.ShardsPerRack[getRackKey(disk)] >= config.MaxShardsPerRack {
continue
}
addDiskToResult(result, disk, usedDisks, usedServers, usedRacks)
}
}
}
// Pass 3: Fill remaining slots from already-used servers (different disks)
// Use round-robin across servers to balance shards evenly
if len(result.SelectedDisks) < config.ShardsNeeded {
// Group remaining disks by server
serverToRemainingDisks := make(map[string][]*DiskCandidate)
for _, disk := range suitable {
if !usedDisks[getDiskKey(disk)] {
serverToRemainingDisks[disk.NodeID] = append(serverToRemainingDisks[disk.NodeID], disk)
}
}
// Sort each server's disks by score
for serverID := range serverToRemainingDisks {
serverToRemainingDisks[serverID] = sortDisksByScore(serverToRemainingDisks[serverID])
}
// Round-robin: repeatedly select from the server with the fewest shards
for len(result.SelectedDisks) < config.ShardsNeeded {
// Find server with fewest shards that still has available disks
var bestServer string
minShards := -1
for serverID, disks := range serverToRemainingDisks {
if len(disks) == 0 {
continue
}
// Check server limit
if config.MaxShardsPerServer > 0 && result.ShardsPerServer[serverID] >= config.MaxShardsPerServer {
continue
}
shardCount := result.ShardsPerServer[serverID]
if minShards == -1 || shardCount < minShards {
minShards = shardCount
bestServer = serverID
} else if shardCount == minShards && serverID < bestServer {
// Tie-break by server name for determinism
bestServer = serverID
}
}
if bestServer == "" {
// No more servers with available disks
break
}
// Pop the best disk from this server
disks := serverToRemainingDisks[bestServer]
disk := disks[0]
serverToRemainingDisks[bestServer] = disks[1:]
// Check rack limit
if config.MaxShardsPerRack > 0 && result.ShardsPerRack[getRackKey(disk)] >= config.MaxShardsPerRack {
continue
}
addDiskToResult(result, disk, usedDisks, usedServers, usedRacks)
}
}
// Calculate final statistics
result.ServersUsed = len(usedServers)
result.RacksUsed = len(usedRacks)
dcSet := make(map[string]bool)
for _, disk := range result.SelectedDisks {
dcSet[disk.DataCenter] = true
}
result.DCsUsed = len(dcSet)
return result, nil
}
// filterSuitableDisks filters disks that are suitable for EC placement
func filterSuitableDisks(disks []*DiskCandidate, config PlacementRequest) []*DiskCandidate {
var suitable []*DiskCandidate
for _, disk := range disks {
if disk.FreeSlots <= 0 {
continue
}
if config.MaxTaskLoad > 0 && disk.LoadCount > config.MaxTaskLoad {
continue
}
suitable = append(suitable, disk)
}
return suitable
}
// groupDisksByRack groups disks by their rack (dc:rack key)
func groupDisksByRack(disks []*DiskCandidate) map[string][]*DiskCandidate {
result := make(map[string][]*DiskCandidate)
for _, disk := range disks {
key := getRackKey(disk)
result[key] = append(result[key], disk)
}
return result
}
// groupDisksByServer groups disks by their server
func groupDisksByServer(disks []*DiskCandidate) map[string][]*DiskCandidate {
result := make(map[string][]*DiskCandidate)
for _, disk := range disks {
result[disk.NodeID] = append(result[disk.NodeID], disk)
}
return result
}
// getRackKey returns the unique key for a rack (dc:rack)
func getRackKey(disk *DiskCandidate) string {
return fmt.Sprintf("%s:%s", disk.DataCenter, disk.Rack)
}
// getDiskKey returns the unique key for a disk (nodeID:diskID)
func getDiskKey(disk *DiskCandidate) string {
return fmt.Sprintf("%s:%d", disk.NodeID, disk.DiskID)
}
// sortRacksByServerCount returns rack keys sorted by number of servers (ascending)
func sortRacksByServerCount(rackToDisks map[string][]*DiskCandidate) []string {
// Count unique servers per rack
rackServerCount := make(map[string]int)
for rackKey, disks := range rackToDisks {
servers := make(map[string]bool)
for _, disk := range disks {
servers[disk.NodeID] = true
}
rackServerCount[rackKey] = len(servers)
}
keys := getSortedRackKeys(rackToDisks)
sort.Slice(keys, func(i, j int) bool {
// Sort by server count (descending) to pick from racks with more options first
return rackServerCount[keys[i]] > rackServerCount[keys[j]]
})
return keys
}
// getSortedRackKeys returns rack keys in a deterministic order
func getSortedRackKeys(rackToDisks map[string][]*DiskCandidate) []string {
keys := make([]string, 0, len(rackToDisks))
for k := range rackToDisks {
keys = append(keys, k)
}
sort.Strings(keys)
return keys
}
// selectBestDiskFromRack selects the best disk from a rack for EC placement
// It prefers servers that haven't been used yet
func selectBestDiskFromRack(disks []*DiskCandidate, usedServers, usedDisks map[string]bool, config PlacementRequest) *DiskCandidate {
var bestDisk *DiskCandidate
bestScore := -1.0
bestIsFromUnusedServer := false
for _, disk := range disks {
if usedDisks[getDiskKey(disk)] {
continue
}
isFromUnusedServer := !usedServers[disk.NodeID]
score := calculateDiskScore(disk)
// Prefer unused servers
if isFromUnusedServer && !bestIsFromUnusedServer {
bestDisk = disk
bestScore = score
bestIsFromUnusedServer = true
} else if isFromUnusedServer == bestIsFromUnusedServer && score > bestScore {
bestDisk = disk
bestScore = score
}
}
return bestDisk
}
// sortDisksByScore returns disks sorted by score (best first)
func sortDisksByScore(disks []*DiskCandidate) []*DiskCandidate {
sorted := make([]*DiskCandidate, len(disks))
copy(sorted, disks)
sort.Slice(sorted, func(i, j int) bool {
return calculateDiskScore(sorted[i]) > calculateDiskScore(sorted[j])
})
return sorted
}
// calculateDiskScore calculates a score for a disk candidate
// Higher score is better
func calculateDiskScore(disk *DiskCandidate) float64 {
score := 0.0
// Primary factor: available capacity (lower utilization is better)
if disk.MaxVolumeCount > 0 {
utilization := float64(disk.VolumeCount) / float64(disk.MaxVolumeCount)
score += (1.0 - utilization) * 60.0 // Up to 60 points
} else {
score += 30.0 // Default if no max count
}
// Secondary factor: fewer shards already on this disk is better
score += float64(10-disk.ShardCount) * 2.0 // Up to 20 points
// Tertiary factor: lower load is better
score += float64(10 - disk.LoadCount) // Up to 10 points
return score
}
// addDiskToResult adds a disk to the result and updates tracking maps
func addDiskToResult(result *PlacementResult, disk *DiskCandidate,
usedDisks, usedServers, usedRacks map[string]bool) {
diskKey := getDiskKey(disk)
rackKey := getRackKey(disk)
result.SelectedDisks = append(result.SelectedDisks, disk)
usedDisks[diskKey] = true
usedServers[disk.NodeID] = true
usedRacks[rackKey] = true
result.ShardsPerServer[disk.NodeID]++
result.ShardsPerRack[rackKey]++
result.ShardsPerDC[disk.DataCenter]++
}
// VerifySpread checks if the placement result meets diversity requirements
func VerifySpread(result *PlacementResult, minServers, minRacks int) error {
if result.ServersUsed < minServers {
return fmt.Errorf("only %d servers used, need at least %d", result.ServersUsed, minServers)
}
if result.RacksUsed < minRacks {
return fmt.Errorf("only %d racks used, need at least %d", result.RacksUsed, minRacks)
}
return nil
}
// CalculateIdealDistribution returns the ideal number of shards per server
// when we have a certain number of shards and servers
func CalculateIdealDistribution(totalShards, numServers int) (min, max int) {
if numServers <= 0 {
return 0, totalShards
}
min = totalShards / numServers
max = min
if totalShards%numServers != 0 {
max = min + 1
}
return
}
|