1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
package log_buffer
import (
"sync"
"sync/atomic"
"testing"
"time"
"github.com/seaweedfs/seaweedfs/weed/pb/filer_pb"
)
// TestConcurrentProducerConsumer simulates the integration test scenario:
// - One producer writing messages continuously
// - Multiple consumers reading from different offsets
// - Consumers reading sequentially (like Kafka consumers)
func TestConcurrentProducerConsumer(t *testing.T) {
lb := NewLogBuffer("integration-test", time.Hour, nil, nil, func() {})
lb.hasOffsets = true
const numMessages = 1000
const numConsumers = 2
const messagesPerConsumer = numMessages / numConsumers
// Start producer
producerDone := make(chan bool)
go func() {
for i := 0; i < numMessages; i++ {
entry := &filer_pb.LogEntry{
TsNs: time.Now().UnixNano(),
Key: []byte("key"),
Data: []byte("value"),
Offset: int64(i),
}
lb.AddLogEntryToBuffer(entry)
time.Sleep(1 * time.Millisecond) // Simulate production rate
}
producerDone <- true
}()
// Start consumers
consumerWg := sync.WaitGroup{}
consumerErrors := make(chan error, numConsumers)
consumedCounts := make([]int64, numConsumers)
for consumerID := 0; consumerID < numConsumers; consumerID++ {
consumerWg.Add(1)
go func(id int, startOffset int64, endOffset int64) {
defer consumerWg.Done()
currentOffset := startOffset
for currentOffset < endOffset {
// Read 10 messages at a time (like integration test)
messages, nextOffset, _, _, err := lb.ReadMessagesAtOffset(currentOffset, 10, 10240)
if err != nil {
consumerErrors <- err
return
}
if len(messages) == 0 {
// No data yet, wait a bit
time.Sleep(5 * time.Millisecond)
continue
}
// Count only messages in this consumer's assigned range
messagesInRange := 0
for i, msg := range messages {
if msg.Offset >= startOffset && msg.Offset < endOffset {
messagesInRange++
expectedOffset := currentOffset + int64(i)
if msg.Offset != expectedOffset {
t.Errorf("Consumer %d: Expected offset %d, got %d", id, expectedOffset, msg.Offset)
}
}
}
atomic.AddInt64(&consumedCounts[id], int64(messagesInRange))
currentOffset = nextOffset
}
}(consumerID, int64(consumerID*messagesPerConsumer), int64((consumerID+1)*messagesPerConsumer))
}
// Wait for producer to finish
<-producerDone
// Wait for consumers (with timeout)
done := make(chan bool)
go func() {
consumerWg.Wait()
done <- true
}()
select {
case <-done:
// Success
case err := <-consumerErrors:
t.Fatalf("Consumer error: %v", err)
case <-time.After(10 * time.Second):
t.Fatal("Timeout waiting for consumers to finish")
}
// Verify all messages were consumed
totalConsumed := int64(0)
for i, count := range consumedCounts {
t.Logf("Consumer %d consumed %d messages", i, count)
totalConsumed += count
}
if totalConsumed != numMessages {
t.Errorf("Expected to consume %d messages, but consumed %d", numMessages, totalConsumed)
}
}
// TestBackwardSeeksWhileProducing simulates consumer rebalancing where
// consumers seek backward to earlier offsets while producer is still writing
func TestBackwardSeeksWhileProducing(t *testing.T) {
lb := NewLogBuffer("backward-seek-test", time.Hour, nil, nil, func() {})
lb.hasOffsets = true
const numMessages = 500
const numSeeks = 10
// Start producer
producerDone := make(chan bool)
go func() {
for i := 0; i < numMessages; i++ {
entry := &filer_pb.LogEntry{
TsNs: time.Now().UnixNano(),
Key: []byte("key"),
Data: []byte("value"),
Offset: int64(i),
}
lb.AddLogEntryToBuffer(entry)
time.Sleep(1 * time.Millisecond)
}
producerDone <- true
}()
// Consumer that seeks backward periodically
consumerDone := make(chan bool)
readOffsets := make(map[int64]int) // Track how many times each offset was read
go func() {
currentOffset := int64(0)
seeksRemaining := numSeeks
for currentOffset < numMessages {
// Read some messages
messages, nextOffset, _, endOfPartition, err := lb.ReadMessagesAtOffset(currentOffset, 10, 10240)
if err != nil {
// For stateless reads, "offset out of range" means data not in memory yet
// This is expected when reading historical data or before production starts
time.Sleep(5 * time.Millisecond)
continue
}
if len(messages) == 0 {
// No data available yet or caught up to producer
if !endOfPartition {
// Data might be coming, wait
time.Sleep(5 * time.Millisecond)
} else {
// At end of partition, wait for more production
time.Sleep(5 * time.Millisecond)
}
continue
}
// Track read offsets
for _, msg := range messages {
readOffsets[msg.Offset]++
}
// Periodically seek backward (simulating rebalancing)
if seeksRemaining > 0 && nextOffset > 50 && nextOffset%100 == 0 {
seekOffset := nextOffset - 20
t.Logf("Seeking backward from %d to %d", nextOffset, seekOffset)
currentOffset = seekOffset
seeksRemaining--
} else {
currentOffset = nextOffset
}
}
consumerDone <- true
}()
// Wait for both
<-producerDone
<-consumerDone
// Verify each offset was read at least once
for i := int64(0); i < numMessages; i++ {
if readOffsets[i] == 0 {
t.Errorf("Offset %d was never read", i)
}
}
t.Logf("Total unique offsets read: %d out of %d", len(readOffsets), numMessages)
}
// TestHighConcurrencyReads simulates multiple consumers reading from
// different offsets simultaneously (stress test)
func TestHighConcurrencyReads(t *testing.T) {
lb := NewLogBuffer("high-concurrency-test", time.Hour, nil, nil, func() {})
lb.hasOffsets = true
const numMessages = 1000
const numReaders = 10
// Pre-populate buffer
for i := 0; i < numMessages; i++ {
entry := &filer_pb.LogEntry{
TsNs: time.Now().UnixNano(),
Key: []byte("key"),
Data: []byte("value"),
Offset: int64(i),
}
lb.AddLogEntryToBuffer(entry)
}
// Start many concurrent readers at different offsets
wg := sync.WaitGroup{}
errors := make(chan error, numReaders)
for reader := 0; reader < numReaders; reader++ {
wg.Add(1)
go func(startOffset int64) {
defer wg.Done()
// Read 100 messages from this offset
currentOffset := startOffset
readCount := 0
for readCount < 100 && currentOffset < numMessages {
messages, nextOffset, _, _, err := lb.ReadMessagesAtOffset(currentOffset, 10, 10240)
if err != nil {
errors <- err
return
}
// Verify offsets are sequential
for i, msg := range messages {
expected := currentOffset + int64(i)
if msg.Offset != expected {
t.Errorf("Reader at %d: expected offset %d, got %d", startOffset, expected, msg.Offset)
}
}
readCount += len(messages)
currentOffset = nextOffset
}
}(int64(reader * 10))
}
// Wait with timeout
done := make(chan bool)
go func() {
wg.Wait()
done <- true
}()
select {
case <-done:
// Success
case err := <-errors:
t.Fatalf("Reader error: %v", err)
case <-time.After(10 * time.Second):
t.Fatal("Timeout waiting for readers")
}
}
// TestRepeatedReadsAtSameOffset simulates what happens when Kafka
// consumer re-fetches the same offset multiple times (due to timeouts or retries)
func TestRepeatedReadsAtSameOffset(t *testing.T) {
lb := NewLogBuffer("repeated-reads-test", time.Hour, nil, nil, func() {})
lb.hasOffsets = true
const numMessages = 100
// Pre-populate buffer
for i := 0; i < numMessages; i++ {
entry := &filer_pb.LogEntry{
TsNs: time.Now().UnixNano(),
Key: []byte("key"),
Data: []byte("value"),
Offset: int64(i),
}
lb.AddLogEntryToBuffer(entry)
}
// Read the same offset multiple times concurrently
const numReads = 10
const testOffset = int64(50)
wg := sync.WaitGroup{}
results := make([][]*filer_pb.LogEntry, numReads)
for i := 0; i < numReads; i++ {
wg.Add(1)
go func(idx int) {
defer wg.Done()
messages, _, _, _, err := lb.ReadMessagesAtOffset(testOffset, 10, 10240)
if err != nil {
t.Errorf("Read %d error: %v", idx, err)
return
}
results[idx] = messages
}(i)
}
wg.Wait()
// Verify all reads returned the same data
firstRead := results[0]
for i := 1; i < numReads; i++ {
if len(results[i]) != len(firstRead) {
t.Errorf("Read %d returned %d messages, expected %d", i, len(results[i]), len(firstRead))
}
for j := range results[i] {
if results[i][j].Offset != firstRead[j].Offset {
t.Errorf("Read %d message %d has offset %d, expected %d",
i, j, results[i][j].Offset, firstRead[j].Offset)
}
}
}
}
// TestEmptyPartitionPolling simulates consumers polling empty partitions
// waiting for data (common in Kafka)
func TestEmptyPartitionPolling(t *testing.T) {
lb := NewLogBuffer("empty-partition-test", time.Hour, nil, nil, func() {})
lb.hasOffsets = true
lb.bufferStartOffset = 0
lb.offset = 0
// Try to read from empty partition
messages, nextOffset, _, endOfPartition, err := lb.ReadMessagesAtOffset(0, 10, 10240)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(messages) != 0 {
t.Errorf("Expected 0 messages, got %d", len(messages))
}
if nextOffset != 0 {
t.Errorf("Expected nextOffset=0, got %d", nextOffset)
}
if !endOfPartition {
t.Error("Expected endOfPartition=true for future offset")
}
}
|