aboutsummaryrefslogtreecommitdiff
path: root/weed/worker/tasks/erasure_coding/detection.go
blob: 1122d2721d04ecaae30eb4c1d2ce347f0a4ea7cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
package erasure_coding

import (
	"fmt"
	"strings"
	"time"

	"github.com/seaweedfs/seaweedfs/weed/admin/topology"
	"github.com/seaweedfs/seaweedfs/weed/glog"
	"github.com/seaweedfs/seaweedfs/weed/pb/worker_pb"
	"github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding"
	"github.com/seaweedfs/seaweedfs/weed/worker/tasks/base"
	"github.com/seaweedfs/seaweedfs/weed/worker/types"
)

// Detection implements the detection logic for erasure coding tasks
func Detection(metrics []*types.VolumeHealthMetrics, clusterInfo *types.ClusterInfo, config base.TaskConfig) ([]*types.TaskDetectionResult, error) {
	if !config.IsEnabled() {
		return nil, nil
	}

	ecConfig := config.(*Config)
	var results []*types.TaskDetectionResult
	now := time.Now()
	quietThreshold := time.Duration(ecConfig.QuietForSeconds) * time.Second
	minSizeBytes := uint64(ecConfig.MinSizeMB) * 1024 * 1024 // Configurable minimum

	debugCount := 0
	skippedAlreadyEC := 0
	skippedTooSmall := 0
	skippedCollectionFilter := 0
	skippedQuietTime := 0
	skippedFullness := 0

	for _, metric := range metrics {
		// Skip if already EC volume
		if metric.IsECVolume {
			skippedAlreadyEC++
			continue
		}

		// Check minimum size requirement
		if metric.Size < minSizeBytes {
			skippedTooSmall++
			continue
		}

		// Check collection filter if specified
		if ecConfig.CollectionFilter != "" {
			// Parse comma-separated collections
			allowedCollections := make(map[string]bool)
			for _, collection := range strings.Split(ecConfig.CollectionFilter, ",") {
				allowedCollections[strings.TrimSpace(collection)] = true
			}
			// Skip if volume's collection is not in the allowed list
			if !allowedCollections[metric.Collection] {
				skippedCollectionFilter++
				continue
			}
		}

		// Check quiet duration and fullness criteria
		if metric.Age >= quietThreshold && metric.FullnessRatio >= ecConfig.FullnessRatio {
			result := &types.TaskDetectionResult{
				TaskType:   types.TaskTypeErasureCoding,
				VolumeID:   metric.VolumeID,
				Server:     metric.Server,
				Collection: metric.Collection,
				Priority:   types.TaskPriorityLow, // EC is not urgent
				Reason: fmt.Sprintf("Volume meets EC criteria: quiet for %.1fs (>%ds), fullness=%.1f%% (>%.1f%%), size=%.1fMB (>%dMB)",
					metric.Age.Seconds(), ecConfig.QuietForSeconds, metric.FullnessRatio*100, ecConfig.FullnessRatio*100,
					float64(metric.Size)/(1024*1024), ecConfig.MinSizeMB),
				ScheduleAt: now,
			}

			// Plan EC destinations if ActiveTopology is available
			if clusterInfo.ActiveTopology != nil {
				multiPlan, err := planECDestinations(clusterInfo.ActiveTopology, metric, ecConfig)
				if err != nil {
					glog.Warningf("Failed to plan EC destinations for volume %d: %v", metric.VolumeID, err)
					continue // Skip this volume if destination planning fails
				}

				// Find all volume replicas from topology
				replicas := findVolumeReplicas(clusterInfo.ActiveTopology, metric.VolumeID, metric.Collection)
				glog.V(1).Infof("Found %d replicas for volume %d: %v", len(replicas), metric.VolumeID, replicas)

				// Create typed parameters with EC destination information and replicas
				result.TypedParams = &worker_pb.TaskParams{
					VolumeId:   metric.VolumeID,
					Server:     metric.Server,
					Collection: metric.Collection,
					VolumeSize: metric.Size, // Store original volume size for tracking changes
					Replicas:   replicas,    // Include all volume replicas for deletion
					TaskParams: &worker_pb.TaskParams_ErasureCodingParams{
						ErasureCodingParams: createECTaskParams(multiPlan),
					},
				}

				glog.V(1).Infof("Planned EC destinations for volume %d: %d shards across %d racks, %d DCs",
					metric.VolumeID, len(multiPlan.Plans), multiPlan.SuccessfulRack, multiPlan.SuccessfulDCs)
			} else {
				glog.Warningf("No ActiveTopology available for destination planning in EC detection")
				continue // Skip this volume if no topology available
			}

			results = append(results, result)
		} else {
			// Count debug reasons
			if debugCount < 5 { // Limit to avoid spam
				if metric.Age < quietThreshold {
					skippedQuietTime++
				}
				if metric.FullnessRatio < ecConfig.FullnessRatio {
					skippedFullness++
				}
			}
			debugCount++
		}
	}

	// Log debug summary if no tasks were created
	if len(results) == 0 && len(metrics) > 0 {
		totalVolumes := len(metrics)
		glog.V(1).Infof("EC detection: No tasks created for %d volumes (skipped: %d already EC, %d too small, %d filtered, %d not quiet, %d not full)",
			totalVolumes, skippedAlreadyEC, skippedTooSmall, skippedCollectionFilter, skippedQuietTime, skippedFullness)

		// Show details for first few volumes
		for i, metric := range metrics {
			if i >= 3 || metric.IsECVolume { // Limit to first 3 non-EC volumes
				continue
			}
			sizeMB := float64(metric.Size) / (1024 * 1024)
			glog.Infof("ERASURE CODING: Volume %d: size=%.1fMB (need ≥%dMB), age=%s (need ≥%s), fullness=%.1f%% (need ≥%.1f%%)",
				metric.VolumeID, sizeMB, ecConfig.MinSizeMB, metric.Age.Truncate(time.Minute), quietThreshold.Truncate(time.Minute),
				metric.FullnessRatio*100, ecConfig.FullnessRatio*100)
		}
	}

	return results, nil
}

// planECDestinations plans the destinations for erasure coding operation
// This function implements EC destination planning logic directly in the detection phase
func planECDestinations(activeTopology *topology.ActiveTopology, metric *types.VolumeHealthMetrics, ecConfig *Config) (*topology.MultiDestinationPlan, error) {
	// Get source node information from topology
	var sourceRack, sourceDC string

	// Extract rack and DC from topology info
	topologyInfo := activeTopology.GetTopologyInfo()
	if topologyInfo != nil {
		for _, dc := range topologyInfo.DataCenterInfos {
			for _, rack := range dc.RackInfos {
				for _, dataNodeInfo := range rack.DataNodeInfos {
					if dataNodeInfo.Id == metric.Server {
						sourceDC = dc.Id
						sourceRack = rack.Id
						break
					}
				}
				if sourceRack != "" {
					break
				}
			}
			if sourceDC != "" {
				break
			}
		}
	}

	// Determine minimum shard disk locations based on configuration
	minTotalDisks := 4

	// Get available disks for EC placement (include source node for EC)
	availableDisks := activeTopology.GetAvailableDisks(topology.TaskTypeErasureCoding, "")
	if len(availableDisks) < minTotalDisks {
		return nil, fmt.Errorf("insufficient disks for EC placement: need %d, have %d", minTotalDisks, len(availableDisks))
	}

	// Select best disks for EC placement with rack/DC diversity
	selectedDisks := selectBestECDestinations(availableDisks, sourceRack, sourceDC, erasure_coding.TotalShardsCount)
	if len(selectedDisks) < minTotalDisks {
		return nil, fmt.Errorf("found %d disks, but could not find %d suitable destinations for EC placement", len(selectedDisks), minTotalDisks)
	}

	var plans []*topology.DestinationPlan
	rackCount := make(map[string]int)
	dcCount := make(map[string]int)

	for _, disk := range selectedDisks {
		plan := &topology.DestinationPlan{
			TargetNode:     disk.NodeID,
			TargetDisk:     disk.DiskID,
			TargetRack:     disk.Rack,
			TargetDC:       disk.DataCenter,
			ExpectedSize:   0, // EC shards don't have predetermined size
			PlacementScore: calculateECScore(disk, sourceRack, sourceDC),
			Conflicts:      checkECPlacementConflicts(disk, sourceRack, sourceDC),
		}
		plans = append(plans, plan)

		// Count rack and DC diversity
		rackKey := fmt.Sprintf("%s:%s", disk.DataCenter, disk.Rack)
		rackCount[rackKey]++
		dcCount[disk.DataCenter]++
	}

	return &topology.MultiDestinationPlan{
		Plans:          plans,
		TotalShards:    len(plans),
		SuccessfulRack: len(rackCount),
		SuccessfulDCs:  len(dcCount),
	}, nil
}

// createECTaskParams creates EC task parameters from the multi-destination plan
func createECTaskParams(multiPlan *topology.MultiDestinationPlan) *worker_pb.ErasureCodingTaskParams {
	var destinations []*worker_pb.ECDestination

	for _, plan := range multiPlan.Plans {
		destination := &worker_pb.ECDestination{
			Node:           plan.TargetNode,
			DiskId:         plan.TargetDisk,
			Rack:           plan.TargetRack,
			DataCenter:     plan.TargetDC,
			PlacementScore: plan.PlacementScore,
		}
		destinations = append(destinations, destination)
	}

	// Collect placement conflicts from all destinations
	var placementConflicts []string
	for _, plan := range multiPlan.Plans {
		placementConflicts = append(placementConflicts, plan.Conflicts...)
	}

	return &worker_pb.ErasureCodingTaskParams{
		Destinations:       destinations,
		DataShards:         erasure_coding.DataShardsCount,   // Standard data shards
		ParityShards:       erasure_coding.ParityShardsCount, // Standard parity shards
		PlacementConflicts: placementConflicts,
	}
}

// selectBestECDestinations selects multiple disks for EC shard placement with diversity
func selectBestECDestinations(disks []*topology.DiskInfo, sourceRack, sourceDC string, shardsNeeded int) []*topology.DiskInfo {
	if len(disks) == 0 {
		return nil
	}

	// Group disks by rack and DC for diversity
	rackGroups := make(map[string][]*topology.DiskInfo)
	for _, disk := range disks {
		rackKey := fmt.Sprintf("%s:%s", disk.DataCenter, disk.Rack)
		rackGroups[rackKey] = append(rackGroups[rackKey], disk)
	}

	var selected []*topology.DiskInfo
	usedRacks := make(map[string]bool)

	// First pass: select one disk from each rack for maximum diversity
	for rackKey, rackDisks := range rackGroups {
		if len(selected) >= shardsNeeded {
			break
		}

		// Select best disk from this rack
		bestDisk := selectBestFromRack(rackDisks, sourceRack, sourceDC)
		if bestDisk != nil {
			selected = append(selected, bestDisk)
			usedRacks[rackKey] = true
		}
	}

	// Second pass: if we need more disks, select from racks we've already used
	if len(selected) < shardsNeeded {
		for _, disk := range disks {
			if len(selected) >= shardsNeeded {
				break
			}

			// Skip if already selected
			alreadySelected := false
			for _, sel := range selected {
				if sel.NodeID == disk.NodeID && sel.DiskID == disk.DiskID {
					alreadySelected = true
					break
				}
			}

			if !alreadySelected && isDiskSuitableForEC(disk) {
				selected = append(selected, disk)
			}
		}
	}

	return selected
}

// selectBestFromRack selects the best disk from a rack for EC placement
func selectBestFromRack(disks []*topology.DiskInfo, sourceRack, sourceDC string) *topology.DiskInfo {
	if len(disks) == 0 {
		return nil
	}

	var bestDisk *topology.DiskInfo
	bestScore := -1.0

	for _, disk := range disks {
		if !isDiskSuitableForEC(disk) {
			continue
		}

		score := calculateECScore(disk, sourceRack, sourceDC)
		if score > bestScore {
			bestScore = score
			bestDisk = disk
		}
	}

	return bestDisk
}

// calculateECScore calculates placement score for EC operations
func calculateECScore(disk *topology.DiskInfo, sourceRack, sourceDC string) float64 {
	if disk.DiskInfo == nil {
		return 0.0
	}

	score := 0.0

	// Prefer disks with available capacity
	if disk.DiskInfo.MaxVolumeCount > 0 {
		utilization := float64(disk.DiskInfo.VolumeCount) / float64(disk.DiskInfo.MaxVolumeCount)
		score += (1.0 - utilization) * 50.0 // Up to 50 points for available capacity
	}

	// Prefer different racks for better distribution
	if disk.Rack != sourceRack {
		score += 30.0
	}

	// Prefer different data centers for better distribution
	if disk.DataCenter != sourceDC {
		score += 20.0
	}

	// Consider current load
	score += (10.0 - float64(disk.LoadCount)) // Up to 10 points for low load

	return score
}

// isDiskSuitableForEC checks if a disk is suitable for EC placement
func isDiskSuitableForEC(disk *topology.DiskInfo) bool {
	if disk.DiskInfo == nil {
		return false
	}

	// Check if disk has capacity
	if disk.DiskInfo.VolumeCount >= disk.DiskInfo.MaxVolumeCount {
		return false
	}

	// Check if disk is not overloaded
	if disk.LoadCount > 10 { // Arbitrary threshold
		return false
	}

	return true
}

// checkECPlacementConflicts checks for placement rule conflicts in EC operations
func checkECPlacementConflicts(disk *topology.DiskInfo, sourceRack, sourceDC string) []string {
	var conflicts []string

	// For EC, being on the same rack as source is often acceptable
	// but we note it as potential conflict for monitoring
	if disk.Rack == sourceRack && disk.DataCenter == sourceDC {
		conflicts = append(conflicts, "same_rack_as_source")
	}

	return conflicts
}

// findVolumeReplicas finds all servers that have replicas of the specified volume
func findVolumeReplicas(activeTopology *topology.ActiveTopology, volumeID uint32, collection string) []string {
	if activeTopology == nil {
		return []string{}
	}

	topologyInfo := activeTopology.GetTopologyInfo()
	if topologyInfo == nil {
		return []string{}
	}

	var replicaServers []string

	// Iterate through all nodes to find volume replicas
	for _, dc := range topologyInfo.DataCenterInfos {
		for _, rack := range dc.RackInfos {
			for _, nodeInfo := range rack.DataNodeInfos {
				for _, diskInfo := range nodeInfo.DiskInfos {
					for _, volumeInfo := range diskInfo.VolumeInfos {
						if volumeInfo.Id == volumeID && volumeInfo.Collection == collection {
							replicaServers = append(replicaServers, nodeInfo.Id)
							break // Found volume on this node, move to next node
						}
					}
				}
			}
		}
	}

	return replicaServers
}